epochs: 200 output_dir: output_dir lambda_A: 10.0 lambda_B: 10.0 lambda_identity: 0.5 model: name: CycleGANModel generator: name: ResnetGenerator output_nc: 3 n_blocks: 9 ngf: 64 use_dropout: False norm_type: instance input_nc: 3 discriminator: name: NLayerDiscriminator ndf: 64 n_layers: 3 norm_type: instance input_nc: 3 gan_mode: lsgan dataset: train: name: UnpairedDataset dataroot: data/cityscapes num_workers: 0 batch_size: 1 phase: train max_dataset_size: inf direction: AtoB input_nc: 3 output_nc: 3 serial_batches: False pool_size: 50 transforms: - name: Resize size: [286, 286] interpolation: 'bicubic' #cv2.INTER_CUBIC - name: RandomCrop size: [256, 256] - name: RandomHorizontalFlip prob: 0.5 - name: Transpose - name: Normalize mean: [127.5, 127.5, 127.5] std: [127.5, 127.5, 127.5] test: name: SingleDataset dataroot: data/cityscapes/testB max_dataset_size: inf direction: BtoA input_nc: 3 output_nc: 3 serial_batches: False pool_size: 50 transforms: - name: Resize size: [256, 256] interpolation: 'bicubic' #cv2.INTER_CUBIC - name: Transpose - name: Normalize mean: [127.5, 127.5, 127.5] std: [127.5, 127.5, 127.5] optimizer: name: Adam beta1: 0.5 lr_scheduler: name: linear learning_rate: 0.0002 start_epoch: 100 decay_epochs: 100 log_config: interval: 100 visiual_interval: 500 snapshot_config: interval: 5