import cv2 import random import os.path from .base_dataset import BaseDataset, get_transform from .image_folder import make_dataset from .builder import DATASETS from .transforms.builder import build_transforms @DATASETS.register() class UnpairedDataset(BaseDataset): """ """ def __init__(self, cfg): """Initialize this dataset class. Args: cfg (dict) -- stores all the experiment flags """ BaseDataset.__init__(self, cfg) self.dir_A = os.path.join(cfg.dataroot, cfg.phase + 'A') # create a path '/path/to/data/trainA' self.dir_B = os.path.join(cfg.dataroot, cfg.phase + 'B') # create a path '/path/to/data/trainB' self.A_paths = sorted(make_dataset( self.dir_A, cfg.max_dataset_size)) # load images from '/path/to/data/trainA' self.B_paths = sorted(make_dataset( self.dir_B, cfg.max_dataset_size)) # load images from '/path/to/data/trainB' self.A_size = len(self.A_paths) # get the size of dataset A self.B_size = len(self.B_paths) # get the size of dataset B btoA = self.cfg.direction == 'BtoA' input_nc = self.cfg.output_nc if btoA else self.cfg.input_nc # get the number of channels of input image output_nc = self.cfg.input_nc if btoA else self.cfg.output_nc # get the number of channels of output image self.transform_A = build_transforms(self.cfg.transforms) self.transform_B = build_transforms(self.cfg.transforms) self.reset_paths() def reset_paths(self): self.path_dict = {} def __getitem__(self, index): """Return a data point and its metadata information. Parameters: index (int) -- a random integer for data indexing Returns a dictionary that contains A, B, A_paths and B_paths A (tensor) -- an image in the input domain B (tensor) -- its corresponding image in the target domain A_paths (str) -- image paths B_paths (str) -- image paths """ A_path = self.A_paths[ index % self.A_size] # make sure index is within then range if self.cfg.serial_batches: # make sure index is within then range index_B = index % self.B_size else: # randomize the index for domain B to avoid fixed pairs. index_B = random.randint(0, self.B_size - 1) B_path = self.B_paths[index_B] A_img = cv2.imread(A_path) B_img = cv2.imread(B_path) # apply image transformation A = self.transform_A(A_img) B = self.transform_B(B_img) # return A, B return {'A': A, 'B': B, 'A_paths': A_path, 'B_paths': B_path} def __len__(self): """Return the total number of images in the dataset. As we have two datasets with potentially different number of images, we take a maximum of """ return max(self.A_size, self.B_size)