# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import cv2 import numpy as np import sys import paddle import paddle.nn as nn from ppgan.utils.visual import * from ppgan.utils.download import get_path_from_url from ppgan.models.generators import GFPGANv1Clean from ppgan.models.generators import GFPGANv1 from ppgan.faceutils.face_detection.detection.blazeface.utils import * GFPGAN_weights = 'https://paddlegan.bj.bcebos.com/models/GFPGAN.pdparams' class gfp_FaceEnhancement(object): def __init__(self, size=512, batch_size=1): super(gfp_FaceEnhancement, self).__init__() # Initialise the face detector model_weights_path = get_path_from_url(GFPGAN_weights) model_weights = paddle.load(model_weights_path) self.face_enhance = GFPGANv1(out_size=512, num_style_feat=512, channel_multiplier=1, resample_kernel=[1, 3, 3, 1], decoder_load_path=None, fix_decoder=True, num_mlp=8, lr_mlp=0.01, input_is_latent=True, different_w=True, narrow=1, sft_half=True) self.face_enhance.load_dict(model_weights['net_g_ema']) self.face_enhance.eval() self.size = size self.mask = np.zeros((512, 512), np.float32) cv2.rectangle(self.mask, (26, 26), (486, 486), (1, 1, 1), -1, cv2.LINE_AA) self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11) self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11) self.mask = paddle.tile(paddle.to_tensor( self.mask).unsqueeze(0).unsqueeze(-1), repeat_times=[batch_size, 1, 1, 3]).numpy() def enhance_from_image(self, img): if isinstance(img, np.ndarray): img, _ = resize_and_crop_image(img, 512) img = paddle.to_tensor(img).transpose([2, 0, 1]) else: assert img.shape == [3, 512, 512] return self.enhance_from_batch(img.unsqueeze(0))[0] def enhance_from_batch(self, img): if isinstance(img, np.ndarray): img_ori, _ = resize_and_crop_batch(img, 512) img = paddle.to_tensor(img_ori).transpose([0, 3, 1, 2]) else: assert img.shape[1:] == [3, 512, 512] img_ori = img.transpose([0, 2, 3, 1]).numpy() img_t = (img / 255. - 0.5) / 0.5 with paddle.no_grad(): out, __ = self.face_enhance(img_t) image_tensor = out * 0.5 + 0.5 image_tensor = image_tensor.transpose([0, 2, 3, 1]) # RGB image_numpy = paddle.clip(image_tensor, 0, 1) * 255.0 out = image_numpy.astype(np.uint8).cpu().numpy() return out * self.mask + (1 - self.mask) * img_ori