epochs: 200 output_dir: output_dir model: name: GANModel generator: name: ConditionalDeepConvGenerator latent_dim: 128 output_nc: 1 size: 28 ngf: 64 n_class: 10 discriminator: name: NLayerDiscriminatorWithClassification ndf: 16 n_layers: 3 input_nc: 1 norm_type: batch n_class: 10 use_sigmoid: True gan_criterion: name: GANLoss gan_mode: vanilla dataset: train: name: CommonVisionDataset dataset_name: MNIST num_workers: 4 batch_size: 64 return_label: True transforms: - name: Normalize mean: [127.5] std: [127.5] keys: [image] params: mode: train test: name: CommonVisionDataset dataset_name: MNIST num_workers: 0 batch_size: 64 return_label: True params: mode: train transforms: - name: Normalize mean: [127.5] std: [127.5] keys: [image] lr_scheduler: name: LinearDecay learning_rate: 0.0002 start_epoch: 100 decay_epochs: 100 # will get from real dataset iters_per_epoch: 1 optimizer: optimizer_G: name: Adam net_names: - netG beta1: 0.5 optimizer_D: name: Adam net_names: - netD beta1: 0.5 log_config: interval: 100 visiual_interval: 500 snapshot_config: interval: 5