epochs: 2 output_dir: output_dir model: name: AnimeGANV2PreTrainModel generator: name: AnimeGenerator discriminator: name: AnimeDiscriminator gan_criterion: name: GANLoss gan_mode: lsgan con_weight: 1 pretrain_ckpt: null dataset: train: name: AnimeGANV2Dataset num_workers: 4 batch_size: 4 dataroot: data/animedataset style: Hayao transform_real: - name: Transpose - name: Normalize mean: [127.5, 127.5, 127.5] std: [127.5, 127.5, 127.5] transform_anime: - name: Add value: [-4.4346957, -8.665916, 13.100612] - name: Transpose - name: Normalize mean: [127.5, 127.5, 127.5] std: [127.5, 127.5, 127.5] transform_gray: - name: Grayscale num_output_channels: 3 - name: Transpose - name: Normalize mean: [127.5, 127.5, 127.5] std: [127.5, 127.5, 127.5] test: name: SingleDataset dataroot: data/animedataset/test/test_photo max_dataset_size: inf direction: BtoA input_nc: 3 output_nc: 3 serial_batches: False pool_size: 50 transforms: - name: Resize size: [256, 256] interpolation: "bicubic" #cv2.INTER_CUBIC - name: Transpose - name: Normalize mean: [127.5, 127.5, 127.5] std: [127.5, 127.5, 127.5] lr_scheduler: name: LinearDecay learning_rate: 0.0002 start_epoch: 100 decay_epochs: 100 # will get from real dataset iters_per_epoch: 1 optimizer: optimizer_G: name: Adam net_names: - netG beta1: 0.5 optimizer_D: name: Adam net_names: - netD beta1: 0.5 log_config: interval: 100 visiual_interval: 100 snapshot_config: interval: 5