total_iters: 300000 output_dir: output_dir find_unused_parameters: True checkpoints_dir: checkpoints use_dataset: True # tensor range for function tensor2img min_max: (0., 1.) model: name: BasicVSRModel fix_iter: 5000 lr_mult: 0.125 generator: name: BasicVSRNet mid_channels: 64 num_blocks: 30 pixel_criterion: name: CharbonnierLoss reduction: mean dataset: train: name: RepeatDataset times: 1000 num_workers: 4 # 6 batch_size: 2 # 4*2 dataset: name: SRREDSMultipleGTDataset mode: train lq_folder: data/REDS/train_sharp_bicubic/X4 gt_folder: data/REDS/train_sharp/X4 crop_size: 256 interval_list: [1] random_reverse: False number_frames: 15 use_flip: True use_rot: True scale: 4 val_partition: REDS4 num_clips: 270 test: name: SRREDSMultipleGTDataset mode: test lq_folder: data/REDS/REDS4_test_sharp_bicubic/X4 gt_folder: data/REDS/REDS4_test_sharp/X4 interval_list: [1] random_reverse: False number_frames: 100 use_flip: False use_rot: False scale: 4 val_partition: REDS4 num_workers: 0 batch_size: 1 lr_scheduler: name: CosineAnnealingRestartLR learning_rate: !!float 2e-4 periods: [300000] restart_weights: [1] eta_min: !!float 1e-7 optimizer: name: Adam # add parameters of net_name to optim # name should in self.nets net_names: - generator beta1: 0.9 beta2: 0.99 validate: interval: 5000 save_img: false metrics: psnr: # metric name, can be arbitrary name: PSNR crop_border: 0 test_y_channel: False ssim: name: SSIM crop_border: 0 test_y_channel: False log_config: interval: 100 visiual_interval: 500 snapshot_config: interval: 5000 export_model: - {name: 'generator', inputs_num: 1}