import time import paddle import math import numpy as np import cv2 def transform(point, center, scale, resolution, invert=False): """Generate and affine transformation matrix. Given a set of points, a center, a scale and a targer resolution, the function generates and affine transformation matrix. If invert is ``True`` it will produce the inverse transformation. Args: point {paddle.tensor} -- the input 2D point center {paddle.tensor or numpy.array} -- the center around which to perform the transformations scale {float} -- the scale of the face/object resolution {float} -- the output resolution invert {bool} -- define wherever the function should produce the direct or the inverse transformation matrix (default: {False}) """ _pt = paddle.ones([3]) _pt[0] = point[0] _pt[1] = point[1] h = 200.0 * scale t = paddle.eye(3) t[0, 0] = resolution / h t[1, 1] = resolution / h t[0, 2] = resolution * (-center[0] / h + 0.5) t[1, 2] = resolution * (-center[1] / h + 0.5) if invert: t = paddle.inverse(t) new_point = (paddle.matmul(t, _pt))[0:2] return new_point.astype('int32') def crop(image, center, scale, resolution=256.0): """Center crops an image or set of heatmaps Args: image {numpy.array} -- an rgb image center {numpy.array} -- the center of the object, usually the same as of the bounding box scale {float} -- scale of the face resolution {float} -- the size of the output cropped image (default: {256.0}) """ """ Crops the image around the center. Input is expected to be an np.ndarray """ ul = transform([1, 1], center, scale, resolution, True) ul = ul.numpy() br = transform([resolution, resolution], center, scale, resolution, True) br = br.numpy() if image.ndim > 2: newDim = np.array([br[1] - ul[1], br[0] - ul[0], image.shape[2]], dtype=np.int32) newImg = np.zeros(newDim, dtype=np.uint8) else: newDim = np.array([br[1] - ul[1], br[0] - ul[0]], dtype=np.int) newImg = np.zeros(newDim, dtype=np.uint8) ht = image.shape[0] wd = image.shape[1] newX = np.array( [max(1, -ul[0] + 1), min(br[0], wd) - ul[0]], dtype=np.int32) newY = np.array( [max(1, -ul[1] + 1), min(br[1], ht) - ul[1]], dtype=np.int32) oldX = np.array([max(1, ul[0] + 1), min(br[0], wd)], dtype=np.int32) oldY = np.array([max(1, ul[1] + 1), min(br[1], ht)], dtype=np.int32) newImg[newY[0] - 1:newY[1], newX[0] - 1:newX[1]] = image[oldY[0] - 1:oldY[1], oldX[0] - 1:oldX[1], :] newImg = cv2.resize(newImg, dsize=(int(resolution), int(resolution)), interpolation=cv2.INTER_LINEAR) return newImg