# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict import paddle import paddle.nn as nn from .generators.builder import build_generator from .discriminators.builder import build_discriminator from ..solver import build_optimizer from .base_model import BaseModel from .losses import GANLoss from .builder import MODELS import importlib from collections import OrderedDict from copy import deepcopy from os import path as osp from .builder import MODELS @MODELS.register() class SRModel(BaseModel): """Base SR model for single image super-resolution.""" def __init__(self, cfg): super(SRModel, self).__init__(cfg) self.model_names = ['G'] self.netG = build_generator(cfg.model.generator) self.visual_names = ['lq', 'output', 'gt'] self.loss_names = ['l_total'] self.optimizers = [] if self.is_train: self.criterionL1 = paddle.nn.L1Loss() self.build_lr_scheduler() self.optimizer_G = build_optimizer( cfg.optimizer, self.lr_scheduler, parameter_list=self.netG.parameters()) self.optimizers.append(self.optimizer_G) def set_input(self, input): self.lq = paddle.to_tensor(input['lq']) if 'gt' in input: self.gt = paddle.to_tensor(input['gt']) self.image_paths = input['lq_path'] def forward(self): pass def test(self): """Forward function used in test time. """ with paddle.no_grad(): self.output = self.netG(self.lq) def optimize_parameters(self): self.optimizer_G.clear_grad() self.output = self.netG(self.lq) l_total = 0 loss_dict = OrderedDict() # pixel loss if self.criterionL1: l_pix = self.criterionL1(self.output, self.gt) l_total += l_pix loss_dict['l_pix'] = l_pix l_total.backward() self.loss_l_total = l_total self.optimizer_G.step()