# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import os import cv2 import glob import numpy as np from PIL import Image from tqdm import tqdm import paddle from ppgan.utils.download import get_path_from_url from ppgan.utils.video import frames2video, video2frames from ppgan.models.generators.deoldify import build_model from .base_predictor import BasePredictor DEOLDIFY_WEIGHT_URL = 'https://paddlegan.bj.bcebos.com/applications/DeOldify_stable.pdparams' class DeOldifyPredictor(BasePredictor): def __init__(self, output='output', weight_path=None, render_factor=32): # self.input = input self.output = os.path.join(output, 'DeOldify') self.render_factor = render_factor self.model = build_model() if weight_path is None: weight_path = get_path_from_url(DEOLDIFY_WEIGHT_URL) state_dict = paddle.load(weight_path) self.model.load_dict(state_dict) self.model.eval() def norm(self, img, render_factor=32, render_base=16): target_size = render_factor * render_base img = img.resize((target_size, target_size), resample=Image.BILINEAR) img = np.array(img).transpose([2, 0, 1]).astype('float32') / 255.0 img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) img -= img_mean img /= img_std return img.astype('float32') def denorm(self, img): img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) img *= img_std img += img_mean img = img.transpose((1, 2, 0)) return (img * 255).clip(0, 255).astype('uint8') def post_process(self, raw_color, orig): color_np = np.asarray(raw_color) orig_np = np.asarray(orig) color_yuv = cv2.cvtColor(color_np, cv2.COLOR_BGR2YUV) orig_yuv = cv2.cvtColor(orig_np, cv2.COLOR_BGR2YUV) hires = np.copy(orig_yuv) hires[:, :, 1:3] = color_yuv[:, :, 1:3] final = cv2.cvtColor(hires, cv2.COLOR_YUV2BGR) final = Image.fromarray(final) return final def run_image(self, img): if isinstance(img, str): ori_img = Image.open(img).convert('LA').convert('RGB') elif isinstance(img, np.ndarray): ori_img = Image.fromarray(img).convert('LA').convert('RGB') elif isinstance(img, Image.Image): ori_img = img img = self.norm(ori_img, self.render_factor) x = paddle.to_tensor(img[np.newaxis, ...]) out = self.model(x) pred_img = self.denorm(out.numpy()[0]) pred_img = Image.fromarray(pred_img) pred_img = pred_img.resize(ori_img.size, resample=Image.BILINEAR) pred_img = self.post_process(pred_img, ori_img) return pred_img def run_video(self, video): base_name = os.path.basename(video).split('.')[0] output_path = os.path.join(self.output, base_name) pred_frame_path = os.path.join(output_path, 'frames_pred') if not os.path.exists(output_path): os.makedirs(output_path) if not os.path.exists(pred_frame_path): os.makedirs(pred_frame_path) cap = cv2.VideoCapture(video) fps = cap.get(cv2.CAP_PROP_FPS) out_path = video2frames(video, output_path) frames = sorted(glob.glob(os.path.join(out_path, '*.png'))) for frame in tqdm(frames): pred_img = self.run_image(frame) frame_name = os.path.basename(frame) pred_img.save(os.path.join(pred_frame_path, frame_name)) frame_pattern_combined = os.path.join(pred_frame_path, '%08d.png') vid_out_path = os.path.join(output_path, '{}_deoldify_out.mp4'.format(base_name)) frames2video(frame_pattern_combined, vid_out_path, str(int(fps))) return frame_pattern_combined, vid_out_path def run(self, input): if not self.is_image(input): return self.run_video(input) else: pred_img = self.run_image(input) out_path = None if self.output: base_name = os.path.splitext(os.path.basename(input))[0] out_path = os.path.join(self.output, base_name + '.png') pred_img.save(out_path) return pred_img, out_path