# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 from glob import glob from natsort import natsorted import numpy as np import os import random from tqdm import tqdm import paddle from ppgan.models.generators import NAFNet from ppgan.utils.download import get_path_from_url from .base_predictor import BasePredictor model_cfgs = { 'Denoising': { 'model_urls': 'https://paddlegan.bj.bcebos.com/models/NAFNet_Denoising.pdparams', 'img_channel': 3, 'width': 64, 'enc_blk_nums': [2, 2, 4, 8], 'middle_blk_num': 12, 'dec_blk_nums': [2, 2, 2, 2] } } class NAFNetPredictor(BasePredictor): def __init__(self, output_path='output_dir', weight_path=None, seed=None, window_size=8): self.output_path = output_path task = 'Denoising' self.task = task self.window_size = window_size if weight_path is None: if task in model_cfgs.keys(): weight_path = get_path_from_url(model_cfgs[task]['model_urls']) checkpoint = paddle.load(weight_path) else: raise ValueError('Predictor need a task to define!') else: if weight_path.startswith("http"): # os.path.islink dosen't work! weight_path = get_path_from_url(weight_path) checkpoint = paddle.load(weight_path) else: checkpoint = paddle.load(weight_path) self.generator = NAFNet( img_channel=model_cfgs[task]['img_channel'], width=model_cfgs[task]['width'], enc_blk_nums=model_cfgs[task]['enc_blk_nums'], middle_blk_num=model_cfgs[task]['middle_blk_num'], dec_blk_nums=model_cfgs[task]['dec_blk_nums']) checkpoint = checkpoint['generator'] self.generator.set_state_dict(checkpoint) self.generator.eval() if seed is not None: paddle.seed(seed) random.seed(seed) np.random.seed(seed) def get_images(self, images_path): if os.path.isdir(images_path): return natsorted( glob(os.path.join(images_path, '*.jpeg')) + glob(os.path.join(images_path, '*.jpg')) + glob(os.path.join(images_path, '*.JPG')) + glob(os.path.join(images_path, '*.png')) + glob(os.path.join(images_path, '*.PNG'))) else: return [images_path] def imread_uint(self, path, n_channels=3): # input: path # output: HxWx3(RGB or GGG), or HxWx1 (G) if n_channels == 1: img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE img = np.expand_dims(img, axis=2) # HxWx1 elif n_channels == 3: img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G if img.ndim == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG else: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB return img def uint2single(self, img): return np.float32(img / 255.) # convert single (HxWxC) to 3-dimensional paddle tensor def single2tensor3(self, img): return paddle.Tensor(np.ascontiguousarray( img, dtype=np.float32)).transpose([2, 0, 1]) def run(self, images_path=None): os.makedirs(self.output_path, exist_ok=True) task_path = os.path.join(self.output_path, self.task) os.makedirs(task_path, exist_ok=True) image_files = self.get_images(images_path) for image_file in tqdm(image_files): img_L = self.imread_uint(image_file, 3) image_name = os.path.basename(image_file) img = cv2.cvtColor(img_L, cv2.COLOR_RGB2BGR) cv2.imwrite(os.path.join(task_path, image_name), img) tmps = image_name.split('.') assert len( tmps) == 2, f'Invalid image name: {image_name}, too much "."' restoration_save_path = os.path.join( task_path, f'{tmps[0]}_restoration.{tmps[1]}') img_L = self.uint2single(img_L) # HWC to CHW, numpy to tensor img_L = self.single2tensor3(img_L) img_L = img_L.unsqueeze(0) with paddle.no_grad(): output = self.generator(img_L) restored = paddle.clip(output, 0, 1) restored = restored.numpy() restored = restored.transpose(0, 2, 3, 1) restored = restored[0] restored = restored * 255 restored = restored.astype(np.uint8) cv2.imwrite(restoration_save_path, cv2.cvtColor(restored, cv2.COLOR_RGB2BGR)) print('Done, output path is:', task_path)