total_iters: 3200000 output_dir: output_dir model: name: NAFNetModel generator: name: NAFNet img_channel: 3 width: 64 enc_blk_nums: [2, 2, 4, 8] middle_blk_num: 12 dec_blk_nums: [2, 2, 2, 2] psnr_criterion: name: PSNRLoss dataset: train: name: NAFNetTrain rgb_dir: data/SIDD/train num_workers: 16 batch_size: 8 # 1GPU img_options: patch_size: 256 test: name: NAFNetVal rgb_dir: data/SIDD/val num_workers: 1 batch_size: 1 img_options: patch_size: 256 export_model: - {name: 'generator', inputs_num: 1} lr_scheduler: name: CosineAnnealingRestartLR learning_rate: !!float 125e-6 # num_gpu * 0.000125 periods: [3200000] restart_weights: [1] eta_min: !!float 1e-7 validate: interval: 5000 save_img: false metrics: psnr: # metric name, can be arbitrary name: PSNR crop_border: 4 test_y_channel: True ssim: name: SSIM crop_border: 4 test_y_channel: True optimizer: name: AdamW # add parameters of net_name to optim # name should in self.nets net_names: - generator weight_decay: 0.0 beta1: 0.9 beta2: 0.9 epsilon: 1e-8 log_config: interval: 10 visiual_interval: 5000 snapshot_config: interval: 5000