#!/usr/bin/env bash set -xe # 运行示例:CUDA_VISIBLE_DEVICES=0 bash run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 500 ${model_mode} # 参数说明 function _set_params(){ run_mode=${1:-"sp"} # 单卡sp|多卡mp batch_size=${2:-"64"} fp_item=${3:-"fp32"} # fp32|fp16 mode=${4:-"epochs"} max_iter=${5:-"500"} # 可选,如果需要修改代码提前中断 model_item=${6:-"model_item"} config=${7:-"config"} log_interval=${8:-"1"} run_log_path=${TRAIN_LOG_DIR:-$(pwd)} # TRAIN_LOG_DIR 后续QA设置该参数 need_profile=${9:-"off"} index=1 base_batch_size=${batch_size} mission_name="图像生成" direction_id=0 keyword="ips:" keyword_loss="G_idt_A_loss:" skip_steps=5 ips_unit="images/s" model_name=${model_item}_bs${batch_size}_${fp_item} # 以下不用修改 device=${CUDA_VISIBLE_DEVICES//,/ } arr=(${device}) num_gpu_devices=${#arr[*]} log_file=${run_log_path}/${model_item}_${run_mode}_bs${batch_size}_${fp_item}_${num_gpu_devices} res_log_file=${run_log_path}/${model_item}_${run_mode}_bs${batch_size}_${fp_item}_${num_gpu_devices}_speed log_profile=${run_log_path}/${model_name}_model.profile } function _train(){ echo "Train on ${num_gpu_devices} GPUs" echo "current CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES, gpus=$num_gpu_devices, batch_size=$batch_size" profiler_cmd="" profiler_options="batch_range=[10,20];profile_path=${log_profile}" if [ $need_profile = "on" ]; then profiler_cmd="--profiler_options=${profiler_options}" fi train_cmd="${profiler_cmd} --config-file=${config} -o dataset.train.batch_size=${batch_size} log_config.interval=${log_interval} ${mode}=${max_iter} " case ${run_mode} in sp) train_cmd="python -u tools/main.py "${train_cmd} ;; mp) rm -rf ./mylog train_cmd="python -m paddle.distributed.launch --log_dir=./mylog --gpus=$CUDA_VISIBLE_DEVICES tools/main.py "${train_cmd} log_parse_file="mylog/workerlog.0" ;; *) echo "choose run_mode(sp or mp)"; exit 1; esac # 以下不用修改 timeout 15m ${train_cmd} > ${log_file} 2>&1 if [ $? -ne 0 ];then echo -e "${model_name}, FAIL" export job_fail_flag=1 else echo -e "${model_name}, SUCCESS" export job_fail_flag=0 fi trap 'for pid in $(jobs -pr); do kill -KILL $pid; done' INT QUIT TERM if [ $run_mode = "mp" -a -d mylog ]; then rm ${log_file} cp mylog/workerlog.0 ${log_file} fi } source ${BENCHMARK_ROOT}/scripts/run_model.sh # 在该脚本中会对符合benchmark规范的log使用analysis.py 脚本进行性能数据解析;该脚本在连调时可从benchmark repo中下载https://github.com/PaddlePaddle/benchmark/blob/master/scripts/run_model.sh;如果不联调只想要产出训练log可以注掉本行,提交时需打开 _set_params $@ _run