# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import paddle from paddle.optimizer.lr import LRScheduler, MultiStepDecay, LambdaDecay from .builder import LRSCHEDULERS LRSCHEDULERS.register(MultiStepDecay) @LRSCHEDULERS.register() class NonLinearDecay(LRScheduler): def __init__(self, learning_rate, lr_decay, last_epoch=-1): self.lr_decay = lr_decay super(NonLinearDecay, self).__init__(learning_rate, last_epoch) def get_lr(self): lr = self.base_lr / (1.0 + self.lr_decay * self.last_epoch) return lr @LRSCHEDULERS.register() class LinearDecay(LambdaDecay): def __init__(self, learning_rate, start_epoch, decay_epochs, iters_per_epoch): def lambda_rule(epoch): epoch = epoch // iters_per_epoch lr_l = 1.0 - max(0, epoch + 1 - start_epoch) / float(decay_epochs + 1) return lr_l super().__init__(learning_rate, lambda_rule) def get_position_from_periods(iteration, cumulative_period): """Get the position from a period list. It will return the index of the right-closest number in the period list. For example, the cumulative_period = [100, 200, 300, 400], if iteration == 50, return 0; if iteration == 210, return 2; if iteration == 300, return 2. Args: iteration (int): Current iteration. cumulative_period (list[int]): Cumulative period list. Returns: int: The position of the right-closest number in the period list. """ for i, period in enumerate(cumulative_period): if iteration <= period: return i @LRSCHEDULERS.register() class CosineAnnealingRestartLR(LRScheduler): """ Cosine annealing with restarts learning rate scheme. An example of config: periods = [10, 10, 10, 10] restart_weights = [1, 0.5, 0.5, 0.5] eta_min=1e-7 It has four cycles, each has 10 iterations. At 10th, 20th, 30th, the scheduler will restart with the weights in restart_weights. Args: learning_rate (float|paddle.nn.optimizer): PaddlePaddle optimizer. periods (list): Period for each cosine anneling cycle. restart_weights (list): Restart weights at each restart iteration. Default: [1]. eta_min (float): The mimimum lr. Default: 0. last_epoch (int): Used in _LRScheduler. Default: -1. """ def __init__(self, learning_rate, periods, restart_weights=[1], eta_min=0, last_epoch=-1): self.periods = periods self.restart_weights = restart_weights self.eta_min = eta_min assert (len(self.periods) == len(self.restart_weights) ), 'periods and restart_weights should have the same length.' self.cumulative_period = [ sum(self.periods[0:i + 1]) for i in range(0, len(self.periods)) ] super(CosineAnnealingRestartLR, self).__init__(learning_rate, last_epoch) def get_lr(self): idx = get_position_from_periods(self.last_epoch, self.cumulative_period) current_weight = self.restart_weights[idx] nearest_restart = 0 if idx == 0 else self.cumulative_period[idx - 1] current_period = self.periods[idx] lr = self.eta_min + current_weight * 0.5 * ( self.base_lr - self.eta_min) * (1 + math.cos(math.pi * ( (self.last_epoch - nearest_restart) / current_period))) return lr