===========================train_params=========================== model_name:edvr python:python3.7 gpu_list:0 ## auto_cast:null total_iters:lite_train_lite_infer=100 output_dir:./output/ dataset.train.batch_size:lite_train_lite_infer=4 pretrained_model:null train_model_name:edvr_m_wo_tsa*/*checkpoint.pdparams train_infer_img_dir:./data/basicvsr_reds/test null:null ## trainer:norm_train norm_train:tools/main.py -c configs/edvr_m_wo_tsa.yaml --seed 123 -o log_config.interval=5 snapshot_config.interval=25 pact_train:null fpgm_train:null distill_train:null null:null null:null ## ===========================eval_params=========================== eval:null null:null ## ===========================infer_params=========================== --output_dir:./output/ load:null norm_export:tools/export_model.py -c configs/edvr_m_wo_tsa.yaml --inputs_size="1,5,3,180,320" --model_name inference --load quant_export:null fpgm_export:null distill_export:null export1:null export2:null inference_dir:inference train_model:./inference/edvr/edvrmodel_generator infer_export:null infer_quant:False inference:tools/inference.py --model_type edvr -c configs/edvr_m_wo_tsa.yaml --seed 123 -o dataset.test.num_frames=5 --output_path test_tipc/output/ --device:gpu null:null null:null null:null null:null null:null --model_path: null:null null:null --benchmark:True null:null ===========================to_static_train_benchmark_params=========================== to_static_train:model.to_static=True ===========================train_benchmark_params========================== batch_size:64 fp_items:fp32|fp16 total_iters:100 --profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile flags:FLAGS_cudnn_exhaustive_search=1