===========================train_params=========================== model_name:Pix2pix python:python3.7 gpu_list:0 ## auto_cast:null epochs:lite_train_lite_infer=10|lite_train_whole_infer=10|whole_train_whole_infer=200 output_dir:./output/ dataset.train.batch_size:lite_train_lite_infer=1|whole_train_whole_infer=1 pretrained_model:null train_model_name:pix2pix_facades*/*checkpoint.pdparams train_infer_img_dir:./data/facades/test null:null ## trainer:norm_train norm_train:tools/main.py -c configs/pix2pix_facades.yaml --seed 123 -o log_config.interval=1 pact_train:null fpgm_train:null distill_train:null to_static_train:model.to_static=True null:null ## ===========================eval_params=========================== eval:null null:null ## ===========================infer_params=========================== --output_dir:./output/ load:null norm_export:tools/export_model.py -c configs/pix2pix_facades.yaml --inputs_size="-1,3,-1,-1" --model_name inference --load quant_export:null fpgm_export:null distill_export:null export1:null export2:null inference_dir:inference train_model:./inference/pix2pix_facade/pix2pixmodel_netG infer_export:null infer_quant:False inference:tools/inference.py --model_type pix2pix --seed 123 -c configs/pix2pix_facades.yaml --output_path test_tipc/output/ --device:cpu null:null null:null null:null null:null null:null --model_path: null:null null:null --benchmark:True null:null ===========================train_benchmark_params========================== batch_size:1 fp_items:fp32 epoch:10 --profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile flags:null ===========================infer_benchmark_params========================== random_infer_input:[{float32,[3,256,256]}]