未验证 提交 bdb0eead 编写于 作者: L LielinJiang 提交者: GitHub

rm fluid api (#641)

上级 45d11f25
......@@ -251,7 +251,7 @@ class Transform:
theta_part_a = theta[:, :, :, :2]
theta_part_b = theta[:, :, :, 2:]
transformed = paddle.fluid.layers.matmul(
transformed = paddle.matmul(
*broadcast(theta_part_a, coordinates)) + theta_part_b #M*p + m0
transformed = transformed.squeeze(-1)
if self.tps:
......
......@@ -2,7 +2,6 @@
# Users should be careful about adopting these functions in any commercial matters.
# https://github.com/clovaai/stargan-v2#license
from paddle.fluid.layers.nn import soft_relu
from .base_model import BaseModel
from paddle import nn
......
......@@ -103,8 +103,7 @@ class Wav2LipModelHq(BaseModel):
self.l1_loss = self.recon_loss(self.g, self.y)
if self.disc_wt > 0.:
if isinstance(self.nets['netDH'], paddle.DataParallel
): #paddle.fluid.dygraph.parallel.DataParallel)
if isinstance(self.nets['netDH'], paddle.DataParallel):
self.perceptual_loss = self.nets[
'netDH']._layers.perceptual_forward(self.g)
else:
......@@ -175,8 +174,7 @@ class Wav2LipModelHq(BaseModel):
self.eval_recon_losses.append(l1loss.numpy().item())
if self.disc_wt > 0.:
if isinstance(self.nets['netDH'], paddle.DataParallel
): #paddle.fluid.dygraph.parallel.DataParallel)
if isinstance(self.nets['netDH'], paddle.DataParallel):
perceptual_loss = self.nets[
'netDH']._layers.perceptual_forward(
self.g).numpy().item()
......
......@@ -468,7 +468,8 @@ class AntiAliasInterpolation2d(nn.Layer):
inv_scale = 1 / self.scale
int_inv_scale = int(inv_scale)
assert (inv_scale == int_inv_scale)
#out = out[:, :, ::int_inv_scale, ::int_inv_scale]
# lite: fluid resize_nearest
# out = paddle.fluid.layers.resize_nearest(out, scale=self.scale)
out = out[:, :, ::int_inv_scale, ::int_inv_scale]
# patch end
out = paddle.fluid.layers.resize_nearest(out, scale=self.scale)
return out
......@@ -5,7 +5,6 @@ import cv2
import imageio
import time
from tqdm import tqdm
import paddle.fluid as fluid
import os
from functools import reduce
import paddle
......@@ -99,11 +98,11 @@ def main():
driving_paths = [driving_path]
# 创建 config
kp_detector_config = paddle_infer.Config(os.path.join(
args.model_path, "kp_detector.pdmodel"),
kp_detector_config = paddle_infer.Config(
os.path.join(args.model_path, "kp_detector.pdmodel"),
os.path.join(args.model_path, "kp_detector.pdiparams"))
generator_config = paddle_infer.Config(os.path.join(
args.model_path, "generator.pdmodel"),
generator_config = paddle_infer.Config(
os.path.join(args.model_path, "generator.pdmodel"),
os.path.join(args.model_path, "generator.pdiparams"))
if args.device == "gpu":
kp_detector_config.enable_use_gpu(100, 0)
......@@ -194,7 +193,8 @@ def main():
generator_output_handle = generator_predictor.get_output_handle(
generator_output_names[0])
output_data = generator_output_handle.copy_to_cpu()
loss = paddle.abs(paddle.to_tensor(output_data) -
loss = paddle.abs(
paddle.to_tensor(output_data) -
paddle.to_tensor(driving_video[i])).mean().cpu().numpy()
test_loss.append(loss)
output_data = np.transpose(output_data, [0, 2, 3, 1])[0] * 255.0
......@@ -210,8 +210,7 @@ def main():
fps=fps)
metric_file = os.path.join(args.output_path, "metric.txt")
log_file = open(metric_file, 'a')
loss_string = "Metric {}: {:.4f}".format(
"l1 loss", np.mean(test_loss))
loss_string = "Metric {}: {:.4f}".format("l1 loss", np.mean(test_loss))
log_file.close()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册