未验证 提交 b03e5b8d 编写于 作者: L LielinJiang 提交者: GitHub

fix torch name (#385)

上级 099c595e
......@@ -26,7 +26,7 @@ from .builder import METRICS
lpips = True
VGG16_TORCHVISION_URL = 'https://paddlegan.bj.bcebos.com/models/vgg16_from_torch.pdparams'
VGG16_TORCHVISION_URL = 'https://paddlegan.bj.bcebos.com/models/vgg16_official.pdparams'
LINS_01_VGG_URL = 'https://paddlegan.bj.bcebos.com/models/lins_0.1_vgg.pdparams'
......@@ -94,7 +94,7 @@ class LPIPSMetric(paddle.metric.Metric):
results_list = []
paddle.distributed.all_gather(results_list, results)
self.results = paddle.concat(results_list).numpy()
if len(self.results) <= 0:
return 0.
return np.mean(self.results)
......
......@@ -31,9 +31,12 @@ import paddle.nn.functional as F
##########################################################################
def conv(in_channels, out_channels, kernel_size, bias_attr=False, stride=1):
return nn.Conv2D(
in_channels, out_channels, kernel_size,
padding=(kernel_size//2), bias_attr=bias_attr, stride = stride)
return nn.Conv2D(in_channels,
out_channels,
kernel_size,
padding=(kernel_size // 2),
bias_attr=bias_attr,
stride=stride)
##########################################################################
......@@ -45,12 +48,16 @@ class CALayer(nn.Layer):
self.avg_pool = nn.AdaptiveAvgPool2D(1)
# feature channel downscale and upscale --> channel weight
self.conv_du = nn.Sequential(
nn.Conv2D(channel, channel // reduction, 1, padding=0, bias_attr=bias_attr),
nn.ReLU(),
# nn.ReLU(inplace=True), torch
nn.Conv2D(channel // reduction, channel, 1, padding=0, bias_attr=bias_attr),
nn.Sigmoid()
)
nn.Conv2D(channel,
channel // reduction,
1,
padding=0,
bias_attr=bias_attr), nn.ReLU(),
nn.Conv2D(channel // reduction,
channel,
1,
padding=0,
bias_attr=bias_attr), nn.Sigmoid())
def forward(self, x):
y = self.avg_pool(x)
......@@ -64,9 +71,11 @@ class CAB(nn.Layer):
def __init__(self, n_feat, kernel_size, reduction, bias_attr, act):
super(CAB, self).__init__()
modules_body = []
modules_body.append(conv(n_feat, n_feat, kernel_size, bias_attr=bias_attr))
modules_body.append(
conv(n_feat, n_feat, kernel_size, bias_attr=bias_attr))
modules_body.append(act)
modules_body.append(conv(n_feat, n_feat, kernel_size, bias_attr=bias_attr))
modules_body.append(
conv(n_feat, n_feat, kernel_size, bias_attr=bias_attr))
self.CA = CALayer(n_feat, reduction, bias_attr=bias_attr)
self.body = nn.Sequential(*modules_body)
......@@ -79,22 +88,35 @@ class CAB(nn.Layer):
##########################################################################
##---------- Resizing Modules ----------
##---------- Resizing Modules ----------
class DownSample(nn.Layer):
def __init__(self, in_channels,s_factor):
def __init__(self, in_channels, s_factor):
super(DownSample, self).__init__()
self.down = nn.Sequential(nn.Upsample(scale_factor=0.5, mode='bilinear', align_corners=False),
nn.Conv2D(in_channels, in_channels+s_factor, 1, stride=1, padding=0, bias_attr=False))
self.down = nn.Sequential(
nn.Upsample(scale_factor=0.5, mode='bilinear', align_corners=False),
nn.Conv2D(in_channels,
in_channels + s_factor,
1,
stride=1,
padding=0,
bias_attr=False))
def forward(self, x):
x = self.down(x)
return x
class UpSample(nn.Layer):
def __init__(self, in_channels,s_factor):
def __init__(self, in_channels, s_factor):
super(UpSample, self).__init__()
self.up = nn.Sequential(nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
nn.Conv2D(in_channels+s_factor, in_channels, 1, stride=1, padding=0, bias_attr=False))
self.up = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
nn.Conv2D(in_channels + s_factor,
in_channels,
1,
stride=1,
padding=0,
bias_attr=False))
def forward(self, x):
x = self.up(x)
......@@ -102,80 +124,148 @@ class UpSample(nn.Layer):
class SkipUpSample(nn.Layer):
def __init__(self, in_channels,s_factor):
def __init__(self, in_channels, s_factor):
super(SkipUpSample, self).__init__()
self.up = nn.Sequential(nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
nn.Conv2D(in_channels+s_factor, in_channels, 1, stride=1, padding=0, bias_attr=False))
self.up = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
nn.Conv2D(in_channels + s_factor,
in_channels,
1,
stride=1,
padding=0,
bias_attr=False))
def forward(self, x, y):
x = self.up(x)
x = x + y
return x
##########################################################################
## U-Net
class Encoder(nn.Layer):
def __init__(self, n_feat, kernel_size, reduction, act, bias_attr, scale_unetfeats, csff):
def __init__(self, n_feat, kernel_size, reduction, act, bias_attr,
scale_unetfeats, csff):
super(Encoder, self).__init__()
self.encoder_level1 = [CAB(n_feat, kernel_size, reduction, bias_attr=bias_attr, act=act) for _ in range(2)]
self.encoder_level2 = [CAB(n_feat+scale_unetfeats, kernel_size, reduction, bias_attr=bias_attr, act=act) for _ in range(2)]
self.encoder_level3 = [CAB(n_feat+(scale_unetfeats*2), kernel_size, reduction, bias_attr=bias_attr, act=act) for _ in range(2)]
self.encoder_level1 = [
CAB(n_feat, kernel_size, reduction, bias_attr=bias_attr, act=act)
for _ in range(2)
]
self.encoder_level2 = [
CAB(n_feat + scale_unetfeats,
kernel_size,
reduction,
bias_attr=bias_attr,
act=act) for _ in range(2)
]
self.encoder_level3 = [
CAB(n_feat + (scale_unetfeats * 2),
kernel_size,
reduction,
bias_attr=bias_attr,
act=act) for _ in range(2)
]
self.encoder_level1 = nn.Sequential(*self.encoder_level1)
self.encoder_level2 = nn.Sequential(*self.encoder_level2)
self.encoder_level3 = nn.Sequential(*self.encoder_level3)
self.down12 = DownSample(n_feat, scale_unetfeats)
self.down23 = DownSample(n_feat+scale_unetfeats, scale_unetfeats)
self.down12 = DownSample(n_feat, scale_unetfeats)
self.down23 = DownSample(n_feat + scale_unetfeats, scale_unetfeats)
# Cross Stage Feature Fusion (CSFF)
if csff:
self.csff_enc1 = nn.Conv2D(n_feat, n_feat, kernel_size=1, bias_attr=bias_attr)
self.csff_enc2 = nn.Conv2D(n_feat+scale_unetfeats, n_feat+scale_unetfeats, kernel_size=1, bias_attr=bias_attr)
self.csff_enc3 = nn.Conv2D(n_feat+(scale_unetfeats*2), n_feat+(scale_unetfeats*2), kernel_size=1, bias_attr=bias_attr)
self.csff_dec1 = nn.Conv2D(n_feat, n_feat, kernel_size=1, bias_attr=bias_attr)
self.csff_dec2 = nn.Conv2D(n_feat+scale_unetfeats, n_feat+scale_unetfeats, kernel_size=1, bias_attr=bias_attr)
self.csff_dec3 = nn.Conv2D(n_feat+(scale_unetfeats*2), n_feat+(scale_unetfeats*2), kernel_size=1, bias_attr=bias_attr)
self.csff_enc1 = nn.Conv2D(n_feat,
n_feat,
kernel_size=1,
bias_attr=bias_attr)
self.csff_enc2 = nn.Conv2D(n_feat + scale_unetfeats,
n_feat + scale_unetfeats,
kernel_size=1,
bias_attr=bias_attr)
self.csff_enc3 = nn.Conv2D(n_feat + (scale_unetfeats * 2),
n_feat + (scale_unetfeats * 2),
kernel_size=1,
bias_attr=bias_attr)
self.csff_dec1 = nn.Conv2D(n_feat,
n_feat,
kernel_size=1,
bias_attr=bias_attr)
self.csff_dec2 = nn.Conv2D(n_feat + scale_unetfeats,
n_feat + scale_unetfeats,
kernel_size=1,
bias_attr=bias_attr)
self.csff_dec3 = nn.Conv2D(n_feat + (scale_unetfeats * 2),
n_feat + (scale_unetfeats * 2),
kernel_size=1,
bias_attr=bias_attr)
def forward(self, x, encoder_outs=None, decoder_outs=None):
enc1 = self.encoder_level1(x)
if (encoder_outs is not None) and (decoder_outs is not None):
enc1 = enc1 + self.csff_enc1(encoder_outs[0]) + self.csff_dec1(decoder_outs[0])
enc1 = enc1 + self.csff_enc1(encoder_outs[0]) + self.csff_dec1(
decoder_outs[0])
x = self.down12(enc1)
enc2 = self.encoder_level2(x)
if (encoder_outs is not None) and (decoder_outs is not None):
enc2 = enc2 + self.csff_enc2(encoder_outs[1]) + self.csff_dec2(decoder_outs[1])
enc2 = enc2 + self.csff_enc2(encoder_outs[1]) + self.csff_dec2(
decoder_outs[1])
x = self.down23(enc2)
enc3 = self.encoder_level3(x)
if (encoder_outs is not None) and (decoder_outs is not None):
enc3 = enc3 + self.csff_enc3(encoder_outs[2]) + self.csff_dec3(decoder_outs[2])
enc3 = enc3 + self.csff_enc3(encoder_outs[2]) + self.csff_dec3(
decoder_outs[2])
return [enc1, enc2, enc3]
class Decoder(nn.Layer):
def __init__(self, n_feat, kernel_size, reduction, act, bias_attr, scale_unetfeats):
def __init__(self, n_feat, kernel_size, reduction, act, bias_attr,
scale_unetfeats):
super(Decoder, self).__init__()
self.decoder_level1 = [CAB(n_feat, kernel_size, reduction, bias_attr=bias_attr, act=act) for _ in range(2)]
self.decoder_level2 = [CAB(n_feat+scale_unetfeats, kernel_size, reduction, bias_attr=bias_attr, act=act) for _ in range(2)]
self.decoder_level3 = [CAB(n_feat+(scale_unetfeats*2), kernel_size, reduction, bias_attr=bias_attr, act=act) for _ in range(2)]
self.decoder_level1 = [
CAB(n_feat, kernel_size, reduction, bias_attr=bias_attr, act=act)
for _ in range(2)
]
self.decoder_level2 = [
CAB(n_feat + scale_unetfeats,
kernel_size,
reduction,
bias_attr=bias_attr,
act=act) for _ in range(2)
]
self.decoder_level3 = [
CAB(n_feat + (scale_unetfeats * 2),
kernel_size,
reduction,
bias_attr=bias_attr,
act=act) for _ in range(2)
]
self.decoder_level1 = nn.Sequential(*self.decoder_level1)
self.decoder_level2 = nn.Sequential(*self.decoder_level2)
self.decoder_level3 = nn.Sequential(*self.decoder_level3)
self.skip_attn1 = CAB(n_feat, kernel_size, reduction, bias_attr=bias_attr, act=act)
self.skip_attn2 = CAB(n_feat+scale_unetfeats, kernel_size, reduction, bias_attr=bias_attr, act=act)
self.skip_attn1 = CAB(n_feat,
kernel_size,
reduction,
bias_attr=bias_attr,
act=act)
self.skip_attn2 = CAB(n_feat + scale_unetfeats,
kernel_size,
reduction,
bias_attr=bias_attr,
act=act)
self.up21 = SkipUpSample(n_feat, scale_unetfeats)
self.up32 = SkipUpSample(n_feat+scale_unetfeats, scale_unetfeats)
self.up21 = SkipUpSample(n_feat, scale_unetfeats)
self.up32 = SkipUpSample(n_feat + scale_unetfeats, scale_unetfeats)
def forward(self, outs):
enc1, enc2, enc3 = outs
......@@ -187,7 +277,7 @@ class Decoder(nn.Layer):
x = self.up21(dec2, self.skip_attn1(enc1))
dec1 = self.decoder_level1(x)
return [dec1,dec2,dec3]
return [dec1, dec2, dec3]
##########################################################################
......@@ -196,7 +286,10 @@ class ORB(nn.Layer):
def __init__(self, n_feat, kernel_size, reduction, act, bias_attr, num_cab):
super(ORB, self).__init__()
modules_body = []
modules_body = [CAB(n_feat, kernel_size, reduction, bias_attr=bias_attr, act=act) for _ in range(num_cab)]
modules_body = [
CAB(n_feat, kernel_size, reduction, bias_attr=bias_attr, act=act)
for _ in range(num_cab)
]
modules_body.append(conv(n_feat, n_feat, kernel_size))
self.body = nn.Sequential(*modules_body)
......@@ -204,40 +297,69 @@ class ORB(nn.Layer):
res = self.body(x)
res += x
return res
##########################################################################
class ORSNet(nn.Layer):
def __init__(self, n_feat, scale_orsnetfeats, kernel_size, reduction, act, bias_attr, scale_unetfeats, num_cab):
def __init__(self, n_feat, scale_orsnetfeats, kernel_size, reduction, act,
bias_attr, scale_unetfeats, num_cab):
super(ORSNet, self).__init__()
self.orb1 = ORB(n_feat+scale_orsnetfeats, kernel_size, reduction, act, bias_attr, num_cab)
self.orb2 = ORB(n_feat+scale_orsnetfeats, kernel_size, reduction, act, bias_attr, num_cab)
self.orb3 = ORB(n_feat+scale_orsnetfeats, kernel_size, reduction, act, bias_attr, num_cab)
self.orb1 = ORB(n_feat + scale_orsnetfeats, kernel_size, reduction, act,
bias_attr, num_cab)
self.orb2 = ORB(n_feat + scale_orsnetfeats, kernel_size, reduction, act,
bias_attr, num_cab)
self.orb3 = ORB(n_feat + scale_orsnetfeats, kernel_size, reduction, act,
bias_attr, num_cab)
self.up_enc1 = UpSample(n_feat, scale_unetfeats)
self.up_dec1 = UpSample(n_feat, scale_unetfeats)
self.up_enc2 = nn.Sequential(UpSample(n_feat+scale_unetfeats, scale_unetfeats), UpSample(n_feat, scale_unetfeats))
self.up_dec2 = nn.Sequential(UpSample(n_feat+scale_unetfeats, scale_unetfeats), UpSample(n_feat, scale_unetfeats))
self.conv_enc1 = nn.Conv2D(n_feat, n_feat+scale_orsnetfeats, kernel_size=1, bias_attr=bias_attr)
self.conv_enc2 = nn.Conv2D(n_feat, n_feat+scale_orsnetfeats, kernel_size=1, bias_attr=bias_attr)
self.conv_enc3 = nn.Conv2D(n_feat, n_feat+scale_orsnetfeats, kernel_size=1, bias_attr=bias_attr)
self.conv_dec1 = nn.Conv2D(n_feat, n_feat+scale_orsnetfeats, kernel_size=1, bias_attr=bias_attr)
self.conv_dec2 = nn.Conv2D(n_feat, n_feat+scale_orsnetfeats, kernel_size=1, bias_attr=bias_attr)
self.conv_dec3 = nn.Conv2D(n_feat, n_feat+scale_orsnetfeats, kernel_size=1, bias_attr=bias_attr)
self.up_enc2 = nn.Sequential(
UpSample(n_feat + scale_unetfeats, scale_unetfeats),
UpSample(n_feat, scale_unetfeats))
self.up_dec2 = nn.Sequential(
UpSample(n_feat + scale_unetfeats, scale_unetfeats),
UpSample(n_feat, scale_unetfeats))
self.conv_enc1 = nn.Conv2D(n_feat,
n_feat + scale_orsnetfeats,
kernel_size=1,
bias_attr=bias_attr)
self.conv_enc2 = nn.Conv2D(n_feat,
n_feat + scale_orsnetfeats,
kernel_size=1,
bias_attr=bias_attr)
self.conv_enc3 = nn.Conv2D(n_feat,
n_feat + scale_orsnetfeats,
kernel_size=1,
bias_attr=bias_attr)
self.conv_dec1 = nn.Conv2D(n_feat,
n_feat + scale_orsnetfeats,
kernel_size=1,
bias_attr=bias_attr)
self.conv_dec2 = nn.Conv2D(n_feat,
n_feat + scale_orsnetfeats,
kernel_size=1,
bias_attr=bias_attr)
self.conv_dec3 = nn.Conv2D(n_feat,
n_feat + scale_orsnetfeats,
kernel_size=1,
bias_attr=bias_attr)
def forward(self, x, encoder_outs, decoder_outs):
x = self.orb1(x)
x = x + self.conv_enc1(encoder_outs[0]) + self.conv_dec1(decoder_outs[0])
x = x + self.conv_enc1(encoder_outs[0]) + self.conv_dec1(
decoder_outs[0])
x = self.orb2(x)
x = x + self.conv_enc2(self.up_enc1(encoder_outs[1])) + self.conv_dec2(self.up_dec1(decoder_outs[1]))
x = x + self.conv_enc2(self.up_enc1(encoder_outs[1])) + self.conv_dec2(
self.up_dec1(decoder_outs[1]))
x = self.orb3(x)
x = x + self.conv_enc3(self.up_enc2(encoder_outs[2])) + self.conv_dec3(self.up_dec2(decoder_outs[2]))
x = x + self.conv_enc3(self.up_enc2(encoder_outs[2])) + self.conv_dec3(
self.up_dec2(decoder_outs[2]))
return x
......@@ -255,35 +377,75 @@ class SAM(nn.Layer):
x1 = self.conv1(x)
img = self.conv2(x) + x_img
x2 = F.sigmoid(self.conv3(img))
x1 = x1*x2
x1 = x1+x
x1 = x1 * x2
x1 = x1 + x
return x1, img
@GENERATORS.register()
class MPRNet(nn.Layer):
def __init__(self, in_c=3, out_c=3, n_feat=96, scale_unetfeats=48, scale_orsnetfeats=32, num_cab=8, kernel_size=3, reduction=4, bias_attr=False):
def __init__(self,
in_c=3,
out_c=3,
n_feat=96,
scale_unetfeats=48,
scale_orsnetfeats=32,
num_cab=8,
kernel_size=3,
reduction=4,
bias_attr=False):
super(MPRNet, self).__init__()
act=nn.PReLU()
self.shallow_feat1 = nn.Sequential(conv(in_c, n_feat, kernel_size, bias_attr=bias_attr), CAB(n_feat,kernel_size, reduction, bias_attr=bias_attr, act=act))
self.shallow_feat2 = nn.Sequential(conv(in_c, n_feat, kernel_size, bias_attr=bias_attr), CAB(n_feat,kernel_size, reduction, bias_attr=bias_attr, act=act))
self.shallow_feat3 = nn.Sequential(conv(in_c, n_feat, kernel_size, bias_attr=bias_attr), CAB(n_feat,kernel_size, reduction, bias_attr=bias_attr, act=act))
act = nn.PReLU()
self.shallow_feat1 = nn.Sequential(
conv(in_c, n_feat, kernel_size, bias_attr=bias_attr),
CAB(n_feat, kernel_size, reduction, bias_attr=bias_attr, act=act))
self.shallow_feat2 = nn.Sequential(
conv(in_c, n_feat, kernel_size, bias_attr=bias_attr),
CAB(n_feat, kernel_size, reduction, bias_attr=bias_attr, act=act))
self.shallow_feat3 = nn.Sequential(
conv(in_c, n_feat, kernel_size, bias_attr=bias_attr),
CAB(n_feat, kernel_size, reduction, bias_attr=bias_attr, act=act))
# Cross Stage Feature Fusion (CSFF)
self.stage1_encoder = Encoder(n_feat, kernel_size, reduction, act, bias_attr, scale_unetfeats, csff=False)
self.stage1_decoder = Decoder(n_feat, kernel_size, reduction, act, bias_attr, scale_unetfeats)
self.stage2_encoder = Encoder(n_feat, kernel_size, reduction, act, bias_attr, scale_unetfeats, csff=True)
self.stage2_decoder = Decoder(n_feat, kernel_size, reduction, act, bias_attr, scale_unetfeats)
self.stage3_orsnet = ORSNet(n_feat, scale_orsnetfeats, kernel_size, reduction, act, bias_attr, scale_unetfeats, num_cab)
self.stage1_encoder = Encoder(n_feat,
kernel_size,
reduction,
act,
bias_attr,
scale_unetfeats,
csff=False)
self.stage1_decoder = Decoder(n_feat, kernel_size, reduction, act,
bias_attr, scale_unetfeats)
self.stage2_encoder = Encoder(n_feat,
kernel_size,
reduction,
act,
bias_attr,
scale_unetfeats,
csff=True)
self.stage2_decoder = Decoder(n_feat, kernel_size, reduction, act,
bias_attr, scale_unetfeats)
self.stage3_orsnet = ORSNet(n_feat, scale_orsnetfeats, kernel_size,
reduction, act, bias_attr, scale_unetfeats,
num_cab)
self.sam12 = SAM(n_feat, kernel_size=1, bias_attr=bias_attr)
self.sam23 = SAM(n_feat, kernel_size=1, bias_attr=bias_attr)
self.concat12 = conv(n_feat*2, n_feat, kernel_size, bias_attr=bias_attr)
self.concat23 = conv(n_feat*2, n_feat+scale_orsnetfeats, kernel_size, bias_attr=bias_attr)
self.tail = conv(n_feat+scale_orsnetfeats, out_c, kernel_size, bias_attr=bias_attr)
self.concat12 = conv(n_feat * 2,
n_feat,
kernel_size,
bias_attr=bias_attr)
self.concat23 = conv(n_feat * 2,
n_feat + scale_orsnetfeats,
kernel_size,
bias_attr=bias_attr)
self.tail = conv(n_feat + scale_orsnetfeats,
out_c,
kernel_size,
bias_attr=bias_attr)
def forward(self, x3_img):
# Original-resolution Image for Stage 3
......@@ -293,14 +455,14 @@ class MPRNet(nn.Layer):
# Multi-Patch Hierarchy: Split Image into four non-overlapping patches
# Two Patches for Stage 2
x2top_img = x3_img[:,:,0:int(H/2),:]
x2bot_img = x3_img[:,:,int(H/2):H,:]
x2top_img = x3_img[:, :, 0:int(H / 2), :]
x2bot_img = x3_img[:, :, int(H / 2):H, :]
# Four Patches for Stage 1
x1ltop_img = x2top_img[:,:,:,0:int(W/2)]
x1rtop_img = x2top_img[:,:,:,int(W/2):W]
x1lbot_img = x2bot_img[:,:,:,0:int(W/2)]
x1rbot_img = x2bot_img[:,:,:,int(W/2):W]
x1ltop_img = x2top_img[:, :, :, 0:int(W / 2)]
x1rtop_img = x2top_img[:, :, :, int(W / 2):W]
x1lbot_img = x2bot_img[:, :, :, 0:int(W / 2)]
x1rbot_img = x2bot_img[:, :, :, int(W / 2):W]
##-------------------------------------------
##-------------- Stage 1---------------------
......@@ -310,17 +472,21 @@ class MPRNet(nn.Layer):
x1rtop = self.shallow_feat1(x1rtop_img)
x1lbot = self.shallow_feat1(x1lbot_img)
x1rbot = self.shallow_feat1(x1rbot_img)
## Process features of all 4 patches with Encoder of Stage 1
feat1_ltop = self.stage1_encoder(x1ltop)
feat1_rtop = self.stage1_encoder(x1rtop)
feat1_lbot = self.stage1_encoder(x1lbot)
feat1_rbot = self.stage1_encoder(x1rbot)
## Concat deep features
feat1_top = [paddle.concat((k,v), 3) for k,v in zip(feat1_ltop,feat1_rtop)]
feat1_bot = [paddle.concat((k,v), 3) for k,v in zip(feat1_lbot,feat1_rbot)]
feat1_top = [
paddle.concat((k, v), 3) for k, v in zip(feat1_ltop, feat1_rtop)
]
feat1_bot = [
paddle.concat((k, v), 3) for k, v in zip(feat1_lbot, feat1_rbot)
]
## Pass features through Decoder of Stage 1
res1_top = self.stage1_decoder(feat1_top)
res1_bot = self.stage1_decoder(feat1_bot)
......@@ -330,13 +496,13 @@ class MPRNet(nn.Layer):
x2bot_samfeats, stage1_img_bot = self.sam12(res1_bot[0], x2bot_img)
## Output image at Stage 1
stage1_img = paddle.concat([stage1_img_top, stage1_img_bot],2)
stage1_img = paddle.concat([stage1_img_top, stage1_img_bot], 2)
##-------------------------------------------
##-------------- Stage 2---------------------
##-------------------------------------------
## Compute Shallow Features
x2top = self.shallow_feat2(x2top_img)
x2bot = self.shallow_feat2(x2bot_img)
x2top = self.shallow_feat2(x2top_img)
x2bot = self.shallow_feat2(x2bot_img)
## Concatenate SAM features of Stage 1 with shallow features of Stage 2
x2top_cat = self.concat12(paddle.concat([x2top, x2top_samfeats], 1))
......@@ -347,7 +513,7 @@ class MPRNet(nn.Layer):
feat2_bot = self.stage2_encoder(x2bot_cat, feat1_bot, res1_bot)
## Concat deep features
feat2 = [paddle.concat((k,v), 2) for k,v in zip(feat2_top,feat2_bot)]
feat2 = [paddle.concat((k, v), 2) for k, v in zip(feat2_top, feat2_bot)]
## Pass features through Decoder of Stage 2
res2 = self.stage2_decoder(feat2)
......@@ -355,18 +521,17 @@ class MPRNet(nn.Layer):
## Apply SAM
x3_samfeats, stage2_img = self.sam23(res2[0], x3_img)
##-------------------------------------------
##-------------- Stage 3---------------------
##-------------------------------------------
## Compute Shallow Features
x3 = self.shallow_feat3(x3_img)
x3 = self.shallow_feat3(x3_img)
## Concatenate SAM features of Stage 2 with shallow features of Stage 3
x3_cat = self.concat23(paddle.concat([x3, x3_samfeats], 1))
x3_cat = self.stage3_orsnet(x3_cat, feat2, res2)
stage3_img = self.tail(x3_cat)
return [stage3_img+x3_img, stage2_img, stage1_img]
return [stage3_img + x3_img, stage2_img, stage1_img]
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册