未验证 提交 a8ae6b7a 编写于 作者: W wangna11BD 提交者: GitHub

add doc for PPMSVSRPredictor and BasicVSRPredictor (#522)

上级 7c33750b
......@@ -48,6 +48,7 @@ GAN--生成对抗网络,被“卷积网络之父”**Yann LeCun(杨立昆)
- 💛 **最新发布** 💛
👀 **视频超分SOTA算法[PP-MSVSR](./docs/zh_CN/tutorials/video_super_resolution.md):一行命令从"马赛克"到"高清影像"** 👀
- **[完整在线教程](https://aistudio.baidu.com/aistudio/projectdetail/3205183)**
<div align='center'>
<img src='https://user-images.githubusercontent.com/48054808/144848981-00c6ad21-0702-4381-9544-becb227ed9f0.gif' width='600'/>
</div>
......
......@@ -7,7 +7,12 @@ PaddleGAN(ppgan.apps)provides prediction APIs covering multiple applications
* [DeepRemaster](#ppgan.apps.DeepRemasterPredictor)
* Super Resolution:
* [RealSR](#ppgan.apps.RealSRPredictor)
* [PPMSVSR](#ppgan.apps.PPMSVSRPredictor)
* [PPMSVSRLarge](#ppgan.apps.PPMSVSRLargePredictor)
* [EDVR](#ppgan.apps.EDVRPredictor)
* [BasicVSR](#ppgan.apps.BasicVSRPredictor)
* [IconVSR](#ppgan.apps.IconVSRPredictor)
* [BasiVSRPlusPlus](#ppgan.apps.BasiVSRPlusPlusPredictor)
* Video Frame Interpolation:
* [DAIN](#ppgan.apps.DAINPredictor)
* Motion Driving:
......@@ -205,21 +210,83 @@ run_video(video)
> > - tuple(frame_path(str), out_path(str)): frame_path is the save path of each frame of the video after super resolution, and out_path is the save path of the video after super resolution.
## ppgan.apps.EDVRPredictor
## ppgan.apps.PPMSVSRPredictor
```python
ppgan.apps.EDVRPredictor(output='output', weight_path=None)
ppgan.apps.PPMSVSRPredictor(output='output', weight_path=None, num_frames=10)
```
> Build the instance of RealSR. EDVR is a model designed for video super resolution. For more details, see the paper, EDVR: Video Restoration with Enhanced Deformable Convolutional Networks (https://arxiv.org/abs/1905.02716). The interface imposes 2x super resolution on the input video. The recommended video format is mp4.
> Build the instance of PPMSVSR. PPMSVSR is a multi-stage VSR deep architecture. For more details, see the paper, PP-MSVSR: Multi-Stage Video Super-Resolution (https://arxiv.org/pdf/2112.02828.pdf). The interface imposes 4x super resolution on the input video. The recommended video format is mp4.
>
> *Note: The interface is only available in static graph, add the following codes to enable static graph before using it:
> **Parameter**
>
> ```
> import paddle
> paddle.enable_static() #enable static graph
> paddle.disable_static() #disable static graph
> from ppgan.apps import PPMSVSRPredictor
> sr = PPMSVSRPredictor()
> # test a video file
> sr.run("docs/imgs/test.mp4")
> ```
> **参数**
>
> > - output (str): path of the output image, default: output. Note that the path should be set as output/EDVR.
> > - weight_path (str): path of the model, default: None,pre-trained integral model will then be automatically downloaded.
> > - num_frames (int): the number of input frames of the PPMSVSR model, the default value: 10. Note that the larger the num_frames, the better the effect of the video after super resolution.
```python
run(video_path)
```
> The execution interface after building the instance.
> **Parameter**
>
> > - video_path (str): path of the video files.
>
> **Return Value**
>
> > - tuple(str, str): the former is the save path of each frame of the video after super resolution, the latter is the save path of the video after super resolution.
## ppgan.apps.PPMSVSRLargePredictor
```python
ppgan.apps.PPMSVSRLargePredictor(output='output', weight_path=None, num_frames=10)
```
> Build the instance of PPMSVSRLarge. PPMSVSRLarge is a Large PPMSVSR model. For more details, see the paper, PP-MSVSR: Multi-Stage Video Super-Resolution (https://arxiv.org/pdf/2112.02828.pdf). The interface imposes 4x super resolution on the input video. The recommended video format is mp4.
>
> **Parameter**
>
> ```
> from ppgan.apps import PPMSVSRLargePredictor
> sr = PPMSVSRLargePredictor()
> # test a video file
> sr.run("docs/imgs/test.mp4")
> ```
> **参数**
>
> > - output (str): path of the output image, default: output. Note that the path should be set as output/EDVR.
> > - weight_path (str): path of the model, default: None,pre-trained integral model will then be automatically downloaded.
> > - num_frames (int): the number of input frames of the PPMSVSR model, the default value: 10. Note that the larger the num_frames, the better the effect of the video after super resolution.
```python
run(video_path)
```
> The execution interface after building the instance.
> **Parameter**
>
> > - video_path (str): path of the video files.
>
> **Return Value**
>
> > - tuple(str, str): the former is the save path of each frame of the video after super resolution, the latter is the save path of the video after super resolution.
## ppgan.apps.EDVRPredictor
```python
ppgan.apps.EDVRPredictor(output='output', weight_path=None)
```
> Build the instance of EDVR. EDVR is a model designed for video super resolution. For more details, see the paper, EDVR: Video Restoration with Enhanced Deformable Convolutional Networks (https://arxiv.org/abs/1905.02716). The interface imposes 4x super resolution on the input video. The recommended video format is mp4.
>
> **Parameter**
>
......@@ -247,6 +314,111 @@ run(video_path)
> > - tuple(str, str): the former is the save path of each frame of the video after super resolution, the latter is the save path of the video after super resolution.
## ppgan.apps.BasicVSRPredictor
```python
ppgan.apps.BasicVSRPredictor(output='output', weight_path=None, num_frames=10)
```
> Build the instance of BasicVSR. BasicVSR is a model designed for video super resolution. For more details, see the paper, BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond (https://arxiv.org/pdf/2012.02181.pdf). The interface imposes 4x super resolution on the input video. The recommended video format is mp4.
>
> **Parameter**
>
> ```
> from ppgan.apps import BasicVSRPredictor
> sr = BasicVSRPredictor()
> # test a video file
> sr.run("docs/imgs/test.mp4")
> ```
> **参数**
>
> > - output (str): path of the output image, default: output. Note that the path should be set as output/EDVR.
> > - weight_path (str): path of the model, default: None,pre-trained integral model will then be automatically downloaded.
> > - num_frames (int): the number of input frames of the PPMSVSR model, the default value: 10. Note that the larger the num_frames, the better the effect of the video after super resolution.
```python
run(video_path)
```
> The execution interface after building the instance.
> **Parameter**
>
> > - video_path (str): path of the video files.
>
> **Return Value**
>
> > - tuple(str, str): the former is the save path of each frame of the video after super resolution, the latter is the save path of the video after super resolution.
## ppgan.apps.IconVSRPredictor
```python
ppgan.apps.IconVSRPredictor(output='output', weight_path=None, num_frames=10)
```
> Build the instance of IconVSR. IconVSR is a VSR model expanded by BasicVSR. For more details, see the paper, BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond (https://arxiv.org/pdf/2012.02181.pdf). The interface imposes 4x super resolution on the input video. The recommended video format is mp4.
>
> **Parameter**
>
> ```
> from ppgan.apps import IconVSRPredictor
> sr = IconVSRPredictor()
> # test a video file
> sr.run("docs/imgs/test.mp4")
> ```
> **参数**
>
> > - output (str): path of the output image, default: output. Note that the path should be set as output/EDVR.
> > - weight_path (str): path of the model, default: None,pre-trained integral model will then be automatically downloaded.
> > - num_frames (int): the number of input frames of the PPMSVSR model, the default value: 10. Note that the larger the num_frames, the better the effect of the video after super resolution.
```python
run(video_path)
```
> The execution interface after building the instance.
> **Parameter**
>
> > - video_path (str): path of the video files.
>
> **Return Value**
>
> > - tuple(str, str): the former is the save path of each frame of the video after super resolution, the latter is the save path of the video after super resolution.
## ppgan.apps.BasiVSRPlusPlusPredictor
```python
ppgan.apps.BasiVSRPlusPlusPredictor(output='output', weight_path=None, num_frames=10)
```
> Build the instance of BasiVSRPlusPlus. BasiVSRPlusPlus is a model designed for video super resolution. For more details, see the paper, BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment (https://arxiv.org/pdf/2104.13371v1.pdf). The interface imposes 4x super resolution on the input video. The recommended video format is mp4.
>
> **Parameter**
>
> ```
> from ppgan.apps import BasiVSRPlusPlusPredictor
> sr = BasiVSRPlusPlusPredictor()
> # test a video file
> sr.run("docs/imgs/test.mp4")
> ```
> **参数**
>
> > - output (str): path of the output image, default: output. Note that the path should be set as output/EDVR.
> > - weight_path (str): path of the model, default: None,pre-trained integral model will then be automatically downloaded.
> > - num_frames (int): the number of input frames of the PPMSVSR model, the default value: 10. Note that the larger the num_frames, the better the effect of the video after super resolution.
```python
run(video_path)
```
> The execution interface after building the instance.
> **Parameter**
>
> > - video_path (str): path of the video files.
>
> **Return Value**
>
> > - tuple(str, str): the former is the save path of each frame of the video after super resolution, the latter is the save path of the video after super resolution.
## ppgan.apps.DAINPredictor
```python
......
......@@ -203,7 +203,7 @@ VSR quantitative comparis on the Vimeo90K, Vid4, UDM10
}
```
- 4. [PP-MSVSR: Multi-Stage Video Super-Resolution]()
- 4. [PP-MSVSR: Multi-Stage Video Super-Resolution](https://arxiv.org/pdf/2112.02828.pdf)
```
@article{jiang2021PP-MSVSR,
......
......@@ -8,14 +8,14 @@ PaddleGAN提供一系列影像修复能力,包括 **[图片上色](./photo_col
```
cd applications
python tools/video-enhance.py --input you_video_path.mp4 --process_order DAIN DeOldify EDVR --output output_dir
python tools/video-enhance.py --input you_video_path.mp4 --process_order DAIN DeOldify PPMSVSR --output output_dir
```
### **参数**
- `--input (str)`: 输入的视频路径。
- `--output (str)`: 输出的视频路径。
- `--process_order`: 调用的模型名字和顺序,比如输入为 `DAIN DeOldify EDVR`,则会顺序调用 `DAINPredictor` `DeOldifyPredictor` `EDVRPredictor`
- `--process_order`: 调用的模型名字和顺序,比如输入为 `DAIN DeOldify PPMSVSR`,则会顺序调用 `DAINPredictor` `DeOldifyPredictor` `PPMSVSRPredictor`
<div align='center'>
<img src='https://user-images.githubusercontent.com/48054808/117925494-e9a70400-b329-11eb-9f38-a48ef946a3a4.gif' width='600'>
......
# 视频分辨率提升
针对视频超分,PaddleGAN提供了两种模型,[RealSR](#RealSR)[EDVR](#EDVR)
针对视频超分,PaddleGAN提供了七种模型,[RealSR](#RealSR)[PPMSVSR](#PPMSVSR)[PPMSVSRLarge](#PPMSVSRLarge)[EDVR](#EDVR)[BasicVSR](#BasicVSR)[IconVSR](#IconVSR)[BasiVSRPlusPlus](#BasiVSRPlusPlus)
## RealSR
[完整模型教程](https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/single_image_super_resolution.md)
[RealSR](https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/en_US/apis/apps.md#ppganappsrealsrpredictor)模型通过估计各种模糊内核以及实际噪声分布,为现实世界的图像设计一种新颖的真实图片降采样框架。基于该降采样框架,可以获取与真实世界图像共享同一域的低分辨率图像。并且提出了一个旨在提高感知度的真实世界超分辨率模型。对合成噪声数据和真实世界图像进行的大量实验表明,该模型能够有效降低了噪声并提高了视觉质量。
[RealSR](https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/en_US/apis/apps.md#ppganappsrealsrpredictor)是图像超分模式,其通过估计各种模糊内核以及实际噪声分布,为现实世界的图像设计一种新颖的真实图片降采样框架。基于该降采样框架,可以获取与真实世界图像共享同一域的低分辨率图像。并且提出了一个旨在提高感知度的真实世界超分辨率模型。对合成噪声数据和真实世界图像进行的大量实验表明,该模型能够有效降低了噪声并提高了视觉质量。
<div align='center'>
<img src='https://user-images.githubusercontent.com/48054808/117925551-02afb500-b32a-11eb-9a11-14e484daa953.png'>
......@@ -40,6 +40,86 @@ deep_remaster.run("/home/aistudio/Peking_input360p_clip6_5s.mp4") #原视频所
```
## PPMSVSR
[完整模型教程](https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md)
[PPMSVSR](https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/en_US/apis/apps.md#ppganappsppmsvsrpredictor)为PaddleGAN自研的轻量视频超分模型,是一种多阶段视频超分深度架构,具有局部融合模块、辅助损失和细化对齐模块,以逐步细化增强结果。具体来说,在第一阶段设计了局部融合模块,在特征传播之前进行局部特征融合, 以加强特征传播中跨帧特征的融合。在第二阶段中引入了一个辅助损失,使传播模块获得的特征保留了更多与HR空间相关的信息。在第三阶段中引入了一个细化的对齐模块,以充分利用前一阶段传播模块的特征信息。大量实验证实,PP-MSVSR在Vid4数据集性能优异,仅使用 1.45M 参数PSNR指标即可达到28.13dB。
[PPMSVSR](https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/en_US/apis/apps.md#ppganappsppmsvsrpredictor)模型是一个轻量视频超分模型,在当前轻量视频超分模型(模型参数量小于6M)中,PPMSVSR以最小的参数量在4个常用视频超分测试数据集Vimeo90K、Vid4、UDM10和REDS4上达到最优超分效果。
<div align='center'>
<img src='https://user-images.githubusercontent.com/79366697/145384020-a98c74df-a3b4-4477-a071-23605739ce80.png'>
</div>
```
ppgan.apps.PPMSVSRPredictor(output='output', weight_path=None, num_frames=10)
```
### 参数
- `output (str,可选的)`: 输出的文件夹路径,默认值:`output`.
- `weight_path (None,可选的)`: 载入的权重路径,如果没有设置,则从云端下载默认的权重到本地。默认值:`None`
- `num_frames (int,可选的)`: 模型输入帧数,默认值:`10`。模型输入帧数设置的越大,模型超分效果越好.
### 使用方式
**1. API预测**
```
from ppgan.apps import PPMSVSRPredictor
sr = PPMSVSRPredictor()
# 测试一个视频文件
sr.run("/home/aistudio/Peking_input360p_clip6_5s.mp4") #原视频所在路径
```
**2. 命令行预测**
```
!python applications/tools/video-enhance.py --input /home/aistudio/Peking_input360p_clip6_5s.mp4 \ #原视频路径
--process_order PPMSVSR \ #对原视频处理的顺序,此处注意“EDVR”四个字母都需大写
--output output_dir #成品视频所在的路径
```
## PPMSVSRLarge
[完整模型教程](https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md)
[PPMSVSRLarge](https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/en_US/apis/apps.md#ppganappsppmsvsrlargepredictor)为PaddleGAN自研的高精度超分模型,是一种多阶段视频超分深度架构,具有局部融合模块、辅助损失和细化对齐模块,以逐步细化增强结果。具体来说,在第一阶段设计了局部融合模块,在特征传播之前进行局部特征融合, 以加强特征传播中跨帧特征的融合。在第二阶段中引入了一个辅助损失,使传播模块获得的特征保留了更多与HR空间相关的信息。在第三阶段中引入了一个细化的对齐模块,以充分利用前一阶段传播模块的特征信息。
[PPMSVSRLarge](https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/en_US/apis/apps.md#ppganappsppmsvsrlargepredictor)模型是为满足精度提升,对PPMSVSR通过增加基础快数量而构造的一个大模型。PPMSVSRLarge与当前精度最高的BasicVSR++模型相比,以相似的参数量达到了更高的精度。
```
ppgan.apps.PPMSVSRLargePredictor(output='output', weight_path=None, num_frames=10)
```
### 参数
- `output (str,可选的)`: 输出的文件夹路径,默认值:`output`.
- `weight_path (None,可选的)`: 载入的权重路径,如果没有设置,则从云端下载默认的权重到本地。默认值:`None`
- `num_frames (int,可选的)`: 模型输入帧数,默认值:`10`。模型输入帧数设置的越大,模型超分效果越好.
### 使用方式
**1. API预测**
```
from ppgan.apps import PPMSVSRLargePredictor
sr = PPMSVSRLargePredictor()
# 测试一个视频文件
sr.run("/home/aistudio/Peking_input360p_clip6_5s.mp4") #原视频所在路径
```
**2. 命令行预测**
```
!python applications/tools/video-enhance.py --input /home/aistudio/Peking_input360p_clip6_5s.mp4 \ #原视频路径
--process_order PPMSVSRLarge \ #对原视频处理的顺序,此处注意“EDVR”四个字母都需大写
--output output_dir #成品视频所在的路径
```
## EDVR
[完整模型教程](https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md)
......@@ -65,18 +145,12 @@ ppgan.apps.EDVRPredictor(output='output', weight_path=None)
### 使用方式
**1. API预测**
目前API预测方式只支持在静态图下运行,需加上启动静态图命令,后续会支持动态图,敬请期待~
```
paddle.enable_static()
from ppgan.apps import EDVRPredictor
sr = EDVRPredictor()
# 测试一个视频文件
sr.run("/home/aistudio/Peking_input360p_clip6_5s.mp4") #原视频所在路径
paddle.disable_static()
```
**2. 命令行预测**
......@@ -87,7 +161,119 @@ paddle.disable_static()
--output output_dir #成品视频所在的路径
```
## BasicVSR
[完整模型教程](https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md)
[BasicVSR](https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/en_US/apis/apps.md#ppganappsbasicvsrpredictor)在VSR的指导下重新考虑了四个基本模块(即传播、对齐、聚合和上采样)的一些最重要的组件。 通过添加一些小设计,重用一些现有组件,得到了简洁的 BasicVSR。与许多最先进的算法相比,BasicVSR在速度和恢复质量方面实现了有吸引力的改进。
```
ppgan.apps.BasicVSRPredictor(output='output', weight_path=None, num_frames=10)
```
### 参数
- `output (str,可选的)`: 输出的文件夹路径,默认值:`output`.
- `weight_path (None,可选的)`: 载入的权重路径,如果没有设置,则从云端下载默认的权重到本地。默认值:`None`
- `num_frames (int,可选的)`: 模型输入帧数,默认值:`10`。模型输入帧数设置的越大,模型超分效果越好.
### 使用方式
**1. API预测**
```
from ppgan.apps import BasicVSRPredictor
sr = BasicVSRPredictor()
# 测试一个视频文件
sr.run("/home/aistudio/Peking_input360p_clip6_5s.mp4") #原视频所在路径
```
**2. 命令行预测**
```
!python applications/tools/video-enhance.py --input /home/aistudio/Peking_input360p_clip6_5s.mp4 \ #原视频路径
--process_order BasicVSR \ #对原视频处理的顺序,此处注意“EDVR”四个字母都需大写
--output output_dir #成品视频所在的路径
```
## IconVSR
[完整模型教程](https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md)
[IconVSR](https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/en_US/apis/apps.md#ppganappsiconvsrpredictor)是由BasicVSR扩展而来,其是在BasicVSR基础之上,通过添加信息重新填充机制和耦合传播方案以促进信息聚合。与BasicVSR相比,IconVSR提升了一点精度。
```
ppgan.apps.IconVSRPredictor(output='output', weight_path=None, num_frames=10)
```
### 参数
- `output (str,可选的)`: 输出的文件夹路径,默认值:`output`.
- `weight_path (None,可选的)`: 载入的权重路径,如果没有设置,则从云端下载默认的权重到本地。默认值:`None`
- `num_frames (int,可选的)`: 模型输入帧数,默认值:`10`。模型输入帧数设置的越大,模型超分效果越好.
### 使用方式
**1. API预测**
```
from ppgan.apps import IconVSRPredictor
sr = IconVSRPredictor()
# 测试一个视频文件
sr.run("/home/aistudio/Peking_input360p_clip6_5s.mp4") #原视频所在路径
```
**2. 命令行预测**
```
!python applications/tools/video-enhance.py --input /home/aistudio/Peking_input360p_clip6_5s.mp4 \ #原视频路径
--process_order IconVSR \ #对原视频处理的顺序,此处注意“EDVR”四个字母都需大写
--output output_dir #成品视频所在的路径
```
## BasiVSRPlusPlus
[完整模型教程](https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md)
[BasiVSRPlusPlus](https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/en_US/apis/apps.md#ppganappsbasicvsrpluspluspredictor)通过提出二阶网格传播和导流可变形对齐来重新设计BasicVSR。通过增强传播和对齐来增强循环框架,BasicVSR++可以更有效地利用未对齐视频帧的时空信息。 在类似的计算约束下,新组件可提高性能。特别是,BasicVSR++ 以相似的参数数量在 PSNR 方面比 BasicVSR 高0.82dB。BasicVSR++ 在NTIRE2021的视频超分辨率和压缩视频增强挑战赛中获得三名冠军和一名亚军。
<div align='center'>
<img src='https://user-images.githubusercontent.com/79366697/145386802-5533f3df-a52b-4917-aa72-20e91833f53c.jpg'>
</div>
```
ppgan.apps.BasiVSRPlusPlusPredictor(output='output', weight_path=None, num_frames=10)
```
### 参数
- `output (str,可选的)`: 输出的文件夹路径,默认值:`output`.
- `weight_path (None,可选的)`: 载入的权重路径,如果没有设置,则从云端下载默认的权重到本地。默认值:`None`
- `num_frames (int,可选的)`: 模型输入帧数,默认值:`10`。模型输入帧数设置的越大,模型超分效果越好.
### 使用方式
**1. API预测**
```
from ppgan.apps import BasiVSRPlusPlusPredictor
sr = BasiVSRPlusPlusPredictor()
# 测试一个视频文件
sr.run("/home/aistudio/Peking_input360p_clip6_5s.mp4") #原视频所在路径
```
**2. 命令行预测**
```
!python applications/tools/video-enhance.py --input /home/aistudio/Peking_input360p_clip6_5s.mp4 \ #原视频路径
--process_order BasiVSRPlusPlus \ #对原视频处理的顺序,此处注意“EDVR”四个字母都需大写
--output output_dir #成品视频所在的路径
```
### 在线项目体验
**1. [老北京城影像修复](https://aistudio.baidu.com/aistudio/projectdetail/1161285)**
**1. [PaddleGAN SOTA算法:视频超分模型PP-MSVSR详解及应用](https://aistudio.baidu.com/aistudio/projectdetail/3205183)**
**2. [老北京城影像修复](https://aistudio.baidu.com/aistudio/projectdetail/1161285)**
**2. [PaddleGAN ❤️ 520特辑](https://aistudio.baidu.com/aistudio/projectdetail/1956943?channelType=0&channel=0)**
**3. [PaddleGAN ❤️ 520特辑](https://aistudio.baidu.com/aistudio/projectdetail/1956943?channelType=0&channel=0)**
......@@ -27,7 +27,7 @@
这里提供4个视频超分辨率常用数据集,REDS,Vimeo90K,Vid4,UDM10。其中REDS和vimeo90k数据集包括训练集和测试集,Vid4和UDM10为测试数据集。将需要的数据集下载解压后放到``PaddleGAN/data``文件夹下 。
REDS([数据下载](https://seungjunnah.github.io/Datasets/reds.html))数据集是NTIRE19公司最新提出的高质量(720p)视频数据集,其由240个训练片段、30个验证片段和30个测试片段组成(每个片段有100个连续帧)。由于测试数据集不可用,这里在训练集选择了四个具有代表性的片段(分别为'000', '011', '015', '020',它们具有不同的场景和动作)作为测试集,用REDS4表示。剩下的训练和验证片段被重新分组为训练数据集(总共266个片段)。
REDS([数据下载](https://seungjunnah.github.io/Datasets/reds.html))数据集是NTIRE19比赛最新提出的高质量(720p)视频数据集,其由240个训练片段、30个验证片段和30个测试片段组成(每个片段有100个连续帧)。由于测试数据集不可用,这里在训练集选择了四个具有代表性的片段(分别为'000', '011', '015', '020',它们具有不同的场景和动作)作为测试集,用REDS4表示。剩下的训练和验证片段被重新分组为训练数据集(总共266个片段)。
处理后的数据集 REDS 的组成形式如下:
```
......@@ -198,7 +198,7 @@ Vimeo90K,Vid4,UDM10测试数据集上超分性能对比
}
```
- 4. [PP-MSVSR: Multi-Stage Video Super-Resolution]()
- 4. [PP-MSVSR: Multi-Stage Video Super-Resolution](https://arxiv.org/pdf/2112.02828.pdf)
```
@article{jiang2021PP-MSVSR,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册