未验证 提交 a449659e 编写于 作者: L lzzyzlbb 提交者: GitHub

Add Fom mobile train code (#411)

* add fom mobile training
上级 3916fc7b
......@@ -4,8 +4,8 @@ output_dir: output_dir
dataset:
train:
name: FirstOrderDataset
batch_size: 1
num_workers: 1
batch_size: 8
num_workers: 4
use_shared_memory: False
phase: train
dataroot: data/first_order/Voxceleb/
......@@ -38,7 +38,10 @@ dataset:
model:
name: FirstOrderModel
name: FirstOrderModelMobile
mode: generator # should be kp_detector, generator, both
kp_weight_path: None
gen_weight_path: None
common_params:
num_kp: 10
num_channels: 3
......@@ -64,6 +67,25 @@ model:
num_blocks: 5
scale_factor: 0.25
mobile_net: True
generator_ori:
name: FirstOrderGenerator
kp_detector_cfg:
temperature: 0.1
block_expansion: 32
max_features: 1024
scale_factor: 0.25
num_blocks: 5
generator_cfg:
block_expansion: 64
max_features: 512
num_down_blocks: 2
num_bottleneck_blocks: 6
estimate_occlusion_map: True
dense_motion_params:
block_expansion: 64
max_features: 1024
num_blocks: 5
scale_factor: 0.25
discriminator:
name: FirstOrderDiscriminator
discriminator_cfg:
......
......@@ -103,6 +103,7 @@ export CUDA_VISIBLE_DEVICES=0
python tools/main.py --config-file configs/dataset_name.yaml
```
- GPU多卡训练:
需要将 “/ppgan/modules/first_order.py”中的nn.BatchNorm 改为nn.SyncBatchNorm
```
export CUDA_VISIBLE_DEVICES=0,1,2,3
python -m paddle.distributed.launch \
......@@ -133,7 +134,6 @@ python -m paddle.distributed.launch \
### 3. 模型压缩
数据处理同上述,模型分为kp_detector和generator,首先固定原始generator部分,训练压缩版的kp_detector部分,然后固定原始kp_detector部分,去训练generator部分,最后将两个压缩的模型一起训练,同时添加中间的蒸馏loss。
**预测:**
```
......@@ -153,14 +153,19 @@ python -u tools/first-order-demo.py \
| 原始 | 229 | 0.012058867 |
| 压缩 | 6.1 | 0.015025159 |
**训练:**
先将configs/firstorder_vox_mobile_256.yaml 中的mode设置成kp_detector, 训练压缩版
的kp_detector的模型,固定原始generator模型;然后将configs/firstorder_vox_mobile_256.yaml 中的mode设置成generator,训练压缩版的generator的模型,固定原始kp_detector模型;最后将mode设置为both,修改配置文件中的kp_weight_path和gen_weight_path为>已经训练好的模型路径,一起训练。
```
export CUDA_VISIBLE_DEVICES=0
python tools/main.py --config-file configs/firstorder_vox_mobile_256.yaml
```
### 4. 模型部署
#### 4.1 导出模型
使用`tools/fom_export.py`脚本导出模型已经部署时使用的配置文件,配置文件名字为`firstorder_vox_mobile_256.yml`。模型导出脚本如下:
```bash
# 导出FOM模型
需要将 “/ppgan/modules/first_order.py”中的nn.SyncBatchNorm 改为nn.BatchNorm,因为export目前不支持SyncBatchNorm
将 out = out[:, :, ::int_inv_scale, ::int_inv_scale] 改为
out = paddle.fluid.layers.resize_nearest(out, scale=self.scale)
python tools/export_model.py \
--config-file configs/firstorder_vox_mobile_256.yaml \
......@@ -169,10 +174,10 @@ python tools/export_model.py \
--export_model output_inference/
```
预测模型会导出到`output_inference/fom_dy2st/`目录下,分别为`model.pdiparams`, `model.pdiparams.info`, `model.pdmodel`
- [预训练模型](https://paddlegan.bj.bcebos.com/applications/first_order_model/paddle_lite/inference/lite.zip)
#### 4.2 PaddleLite部署
- [使用Paddle Lite部署FOM模型](./lite/README.md)
- [使用Paddle Lite部署FOM模型](https://github.com/PaddlePaddle/PaddleGAN/tree/develop/deploy/lite)
- [FOM-Lite-Demo](https://paddlegan.bj.bcebos.com/applications/first_order_model/paddle_lite/apk/face_detection_demo%202.zip)。更多内容,请参考[Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite)
目前问题:
(a).Paddle Lite运行效果略差于Paddle Inference,正在优化中
......@@ -190,4 +195,3 @@ python tools/export_model.py \
}
```
......@@ -31,6 +31,7 @@ import paddle.nn.functional as F
import cv2
import os
def init_weight(net):
def reset_func(m):
if isinstance(m, (nn.BatchNorm, nn.BatchNorm2D, nn.SyncBatchNorm)):
......@@ -201,10 +202,11 @@ class FirstOrderModel(BaseModel):
paddle.inverse(kp_driving_initial['jacobian']))
kp_norm['jacobian'] = paddle.matmul(jacobian_diff,
kp_source['jacobian'])
out = self.generator(source, kp_source=kp_source, kp_driving=kp_norm)
out = self.generator(source,
kp_source=kp_source,
kp_driving=kp_norm)
return out['prediction']
def export_model(self, export_model=None, output_dir=None, inputs_size=[]):
source = paddle.rand(shape=inputs_size[0], dtype='float32')
......@@ -220,12 +222,168 @@ class FirstOrderModel(BaseModel):
outpath = os.path.join(output_dir, "fom_dy2st")
if not os.path.exists(outpath):
os.makedirs(outpath)
paddle.jit.save(self.nets['Gen_Full'].kp_extractor, os.path.join(outpath, "kp_detector"), input_spec=[source])
paddle.jit.save(self.nets['Gen_Full'].kp_extractor,
os.path.join(outpath, "kp_detector"),
input_spec=[source])
infer_generator = self.InferGenerator()
infer_generator.set_generator(self.nets['Gen_Full'].generator)
paddle.jit.save(infer_generator, os.path.join(outpath, "generator"), input_spec=[source, driving1, driving2, driving3])
paddle.jit.save(infer_generator,
os.path.join(outpath, "generator"),
input_spec=[source, driving1, driving2, driving3])
@MODELS.register()
class FirstOrderModelMobile(FirstOrderModel):
""" This class implements the FirstOrderMotionMobile model, modified according to the FirstOrderMotion paper:
https://proceedings.neurips.cc/paper/2019/file/31c0b36aef265d9221af80872ceb62f9-Paper.pdf.
"""
def __init__(self,
common_params,
train_params,
generator_ori,
generator,
mode,
kp_weight_path=None,
gen_weight_path=None,
discriminator=None):
super(FirstOrderModel, self).__init__()
modes = ["kp_detector", "generator", "both"]
assert mode in modes
# def local var
self.input_data = None
self.generated = None
self.losses_generator = None
self.train_params = train_params
# fix origin fom model for distill
generator_ori_cfg = generator_ori
generator_ori_cfg.update({'common_params': common_params})
generator_ori_cfg.update({'train_params': train_params})
generator_ori_cfg.update(
{'dis_scales': discriminator.discriminator_cfg.scales})
self.Gen_Full_ori = build_generator(generator_ori_cfg)
discriminator_cfg = discriminator
discriminator_cfg.update({'common_params': common_params})
discriminator_cfg.update({'train_params': train_params})
self.nets['Dis'] = build_discriminator(discriminator_cfg)
# define networks
generator_cfg = generator
generator_cfg.update({'common_params': common_params})
generator_cfg.update({'train_params': train_params})
generator_cfg.update(
{'dis_scales': discriminator.discriminator_cfg.scales})
if (mode == "kp_detector"):
print("just train kp_detector, fix generator")
generator_cfg.update(
{'generator_cfg': generator_ori_cfg['generator_cfg']})
elif mode == "generator":
print("just train generator, fix kp_detector")
generator_cfg.update(
{'kp_detector_cfg': generator_ori_cfg['kp_detector_cfg']})
elif mode == "both":
print("train both kp_detector and generator")
self.mode = mode
self.nets['Gen_Full'] = build_generator(generator_cfg)
self.kp_weight_path = kp_weight_path
self.gen_weight_path = gen_weight_path
self.visualizer = Visualizer()
def setup_net_parallel(self):
if isinstance(self.nets['Gen_Full'], paddle.DataParallel):
self.nets['kp_detector'] = self.nets[
'Gen_Full']._layers.kp_extractor
self.nets['generator'] = self.nets['Gen_Full']._layers.generator
self.kp_detector_ori = self.Gen_Full_ori._layers.kp_extractor
self.nets['generator'] = self.nets['Gen_Full']._layers.generator
self.nets['discriminator'] = self.nets['Dis']._layers.discriminator
else:
self.nets['kp_detector'] = self.nets['Gen_Full'].kp_extractor
self.nets['generator'] = self.nets['Gen_Full'].generator
self.kp_detector_ori = self.Gen_Full_ori.kp_extractor
self.nets['discriminator'] = self.nets['Dis'].discriminator
from ppgan.utils.download import get_path_from_url
vox_cpk_weight_url = 'https://paddlegan.bj.bcebos.com/applications/first_order_model/vox-cpk.pdparams'
weight_path = get_path_from_url(vox_cpk_weight_url)
checkpoint = paddle.load(weight_path)
if (self.mode == "kp_detector"):
self.nets['generator'].set_state_dict(checkpoint['generator'])
for param in self.nets['generator'].parameters():
param.stop_gradient = True
elif self.mode == "generator":
self.nets['kp_detector'].set_state_dict(checkpoint['kp_detector'])
for param in self.nets['kp_detector'].parameters():
param.stop_gradient = True
elif self.mode == "both":
checkpoint = paddle.load(self.kp_weight_path)
self.nets['kp_detector'].set_state_dict(checkpoint['kp_detector'])
checkpoint = paddle.load(self.gen_weight_path)
self.nets['generator'].set_state_dict(checkpoint['generator'])
self.kp_detector_ori.set_state_dict(checkpoint['kp_detector'])
for param in self.kp_detector_ori.parameters():
param.stop_gradient = True
def setup_optimizers(self, lr_cfg, optimizer):
self.setup_net_parallel()
# init params
init_weight(self.nets['discriminator'])
self.optimizers['optimizer_Dis'] = build_optimizer(
optimizer,
self.dis_lr,
parameters=self.nets['discriminator'].parameters())
if (self.mode == "kp_detector"):
init_weight(self.nets['kp_detector'])
self.optimizers['optimizer_KP'] = build_optimizer(
optimizer,
self.kp_lr,
parameters=self.nets['kp_detector'].parameters())
elif self.mode == "generator":
init_weight(self.nets['generator'])
self.optimizers['optimizer_Gen'] = build_optimizer(
optimizer,
self.gen_lr,
parameters=self.nets['generator'].parameters())
elif self.mode == "both":
super(FirstOrderModelMobile,
self).setup_optimizers(lr_cfg, optimizer)
# define loss functions
self.losses = {}
def forward(self):
"""Run forward pass; called by both functions <optimize_parameters> and <test>."""
if (self.mode == "kp_detector_distill"):
self.losses_generator, self.generated = \
self.nets['Gen_Full'](self.input_data.copy(), self.nets['discriminator'], self.kp_detector_ori)
else:
self.losses_generator, self.generated = \
self.nets['Gen_Full'](self.input_data.copy(), self.nets['discriminator'])
def train_iter(self, optimizers=None):
if (self.mode == "both"):
super(FirstOrderModelMobile, self).train_iter(optimizers=optimizers)
return
self.forward()
# update G
self.set_requires_grad(self.nets['discriminator'], False)
if (self.mode == "kp_detector"):
self.optimizers['optimizer_KP'].clear_grad()
self.backward_G()
self.optimizers['optimizer_KP'].step()
if (self.mode == "generator"):
self.optimizers['optimizer_Gen'].clear_grad()
self.backward_G()
self.optimizers['optimizer_Gen'].step()
outs = {}
# update D
if self.train_params['loss_weights']['generator_gan'] != 0:
self.set_requires_grad(self.nets['discriminator'], True)
self.optimizers['optimizer_Dis'].clear_grad()
self.backward_D()
self.optimizers['optimizer_Dis'].step()
class Visualizer:
......
......@@ -68,7 +68,7 @@ class FirstOrderGenerator(nn.Layer):
if sum(self.loss_weights['perceptual']) != 0:
self.vgg = VGG19()
def forward(self, x, discriminator):
def forward(self, x, discriminator, kp_extractor_ori=None):
kp_source = self.kp_extractor(x['source'])
kp_driving = self.kp_extractor(x['driving'])
generated = self.generator(x['source'],
......@@ -151,6 +151,19 @@ class FirstOrderGenerator(nn.Layer):
value = paddle.abs(eye - value).mean()
loss_values['equivariance_jacobian'] = self.loss_weights[
'equivariance_jacobian'] * value
if kp_extractor_ori is not None:
recon_loss = paddle.nn.loss.L1Loss()
kp_distillation_loss_source = recon_loss(
kp_extractor_ori(x['source'])['value'],
self.kp_extractor(x['source'])['value'])
kp_distillation_loss_driving = recon_loss(
kp_extractor_ori(x['driving'])['value'],
self.kp_extractor(x['driving'])['value'])
loss_values[
"kp_distillation_loss"] = kp_distillation_loss_source + kp_distillation_loss_driving
return loss_values, generated
......
......@@ -20,9 +20,8 @@ import paddle.nn.functional as F
def SyncBatchNorm(*args, **kwargs):
"""In cpu environment nn.SyncBatchNorm does not have kernel so use nn.BatchNorm instead"""
if paddle.get_device() == 'cpu':
return nn.BatchNorm(*args, **kwargs)
if paddle.distributed.get_world_size() > 1:
return nn.SyncBatchNorm(*args, **kwargs)
else:
return nn.BatchNorm(*args, **kwargs)
......@@ -123,20 +122,30 @@ class ResBlock2d(nn.Layer):
out += x
return out
class MobileResBlock2d(nn.Layer):
"""
Res block, preserve spatial resolution.
"""
def __init__(self, in_features, kernel_size, padding):
super(MobileResBlock2d, self).__init__()
out_features = in_features * 2
self.conv_pw = nn.Conv2D(in_channels=in_features, out_channels=out_features, kernel_size=1,
padding=0, bias_attr=False)
self.conv_dw = nn.Conv2D(in_channels=out_features, out_channels=out_features, kernel_size=kernel_size,
padding=padding, groups=out_features, bias_attr=False)
self.conv_pw_linear = nn.Conv2D(in_channels=out_features, out_channels=in_features, kernel_size=1,
padding=0, bias_attr=False)
self.conv_pw = nn.Conv2D(in_channels=in_features,
out_channels=out_features,
kernel_size=1,
padding=0,
bias_attr=False)
self.conv_dw = nn.Conv2D(in_channels=out_features,
out_channels=out_features,
kernel_size=kernel_size,
padding=padding,
groups=out_features,
bias_attr=False)
self.conv_pw_linear = nn.Conv2D(in_channels=out_features,
out_channels=in_features,
kernel_size=1,
padding=0,
bias_attr=False)
self.norm1 = SyncBatchNorm(in_features)
self.norm_pw = SyncBatchNorm(out_features)
self.norm_dw = SyncBatchNorm(out_features)
......@@ -184,18 +193,30 @@ class UpBlock2d(nn.Layer):
out = F.relu(out)
return out
class MobileUpBlock2d(nn.Layer):
"""
Upsampling block for use in decoder.
"""
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
def __init__(self,
in_features,
out_features,
kernel_size=3,
padding=1,
groups=1):
super(MobileUpBlock2d, self).__init__()
self.conv = nn.Conv2D(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
padding=padding, groups=in_features, bias_attr=False)
self.conv1 = nn.Conv2D(in_channels=in_features, out_channels=out_features, kernel_size=1,
padding=0, bias_attr=False)
self.conv = nn.Conv2D(in_channels=in_features,
out_channels=in_features,
kernel_size=kernel_size,
padding=padding,
groups=in_features,
bias_attr=False)
self.conv1 = nn.Conv2D(in_channels=in_features,
out_channels=out_features,
kernel_size=1,
padding=0,
bias_attr=False)
self.norm = SyncBatchNorm(in_features)
self.norm1 = SyncBatchNorm(out_features)
......@@ -210,7 +231,6 @@ class MobileUpBlock2d(nn.Layer):
return out
class DownBlock2d(nn.Layer):
"""
Downsampling block for use in encoder.
......@@ -242,18 +262,30 @@ class MobileDownBlock2d(nn.Layer):
"""
Downsampling block for use in encoder.
"""
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
def __init__(self,
in_features,
out_features,
kernel_size=3,
padding=1,
groups=1):
super(MobileDownBlock2d, self).__init__()
self.conv = nn.Conv2D(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
padding=padding, groups=in_features, bias_attr=False)
self.conv = nn.Conv2D(in_channels=in_features,
out_channels=in_features,
kernel_size=kernel_size,
padding=padding,
groups=in_features,
bias_attr=False)
self.norm = SyncBatchNorm(in_features)
self.pool = nn.AvgPool2D(kernel_size=(2, 2))
self.conv1 = nn.Conv2D(in_features, out_features, kernel_size=1, padding=0, stride=1, bias_attr=False)
self.conv1 = nn.Conv2D(in_features,
out_features,
kernel_size=1,
padding=0,
stride=1,
bias_attr=False)
self.norm1 = SyncBatchNorm(out_features)
def forward(self, x):
out = self.conv(x)
out = self.norm(out)
......@@ -282,7 +314,7 @@ class SameBlock2d(nn.Layer):
kernel_size=kernel_size,
padding=padding,
groups=groups,
bias_attr=(mobile_net==False))
bias_attr=(mobile_net == False))
self.norm = SyncBatchNorm(out_features)
def forward(self, x):
......@@ -301,7 +333,7 @@ class Encoder(nn.Layer):
in_features,
num_blocks=3,
max_features=256,
mobile_net = False):
mobile_net=False):
super(Encoder, self).__init__()
down_blocks = []
......@@ -310,13 +342,16 @@ class Encoder(nn.Layer):
down_blocks.append(
MobileDownBlock2d(in_features if i == 0 else min(
max_features, block_expansion * (2**i)),
min(max_features, block_expansion * (2**(i + 1))),
kernel_size=3, padding=1))
min(max_features,
block_expansion * (2**(i + 1))),
kernel_size=3,
padding=1))
else:
down_blocks.append(
DownBlock2d(in_features if i == 0 else min(
max_features, block_expansion * (2**i)),
min(max_features, block_expansion * (2**(i + 1))),
min(max_features,
block_expansion * (2**(i + 1))),
kernel_size=3,
padding=1))
self.down_blocks = nn.LayerList(down_blocks)
......@@ -337,7 +372,7 @@ class Decoder(nn.Layer):
in_features,
num_blocks=3,
max_features=256,
mobile_net = False):
mobile_net=False):
super(Decoder, self).__init__()
up_blocks = []
......@@ -348,12 +383,16 @@ class Decoder(nn.Layer):
in_filters = (1 if i == num_blocks - 1 else 2) * min(
max_features, block_expansion * (2**(i + 1)))
up_blocks.append(
MobileUpBlock2d(in_filters, out_filters, kernel_size=3, padding=1))
MobileUpBlock2d(in_filters,
out_filters,
kernel_size=3,
padding=1))
else:
in_filters = (1 if i == num_blocks - 1 else 2) * min(
max_features, block_expansion * (2**(i + 1)))
up_blocks.append(
UpBlock2d(in_filters, out_filters, kernel_size=3, padding=1))
UpBlock2d(in_filters, out_filters, kernel_size=3,
padding=1))
self.up_blocks = nn.LayerList(up_blocks)
self.out_filters = block_expansion + in_features
......@@ -378,10 +417,16 @@ class Hourglass(nn.Layer):
max_features=256,
mobile_net=False):
super(Hourglass, self).__init__()
self.encoder = Encoder(block_expansion, in_features, num_blocks,
max_features, mobile_net=mobile_net)
self.decoder = Decoder(block_expansion, in_features, num_blocks,
max_features, mobile_net=mobile_net)
self.encoder = Encoder(block_expansion,
in_features,
num_blocks,
max_features,
mobile_net=mobile_net)
self.decoder = Decoder(block_expansion,
in_features,
num_blocks,
max_features,
mobile_net=mobile_net)
self.out_filters = self.decoder.out_filters
def forward(self, x):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册