Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleGAN
提交
a33c7090
P
PaddleGAN
项目概览
PaddlePaddle
/
PaddleGAN
大约 1 年 前同步成功
通知
97
Star
7254
Fork
1210
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleGAN
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a33c7090
编写于
9月 28, 2020
作者:
C
ceci3
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add mobile resnet
上级
4cd9a0b1
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
202 addition
and
0 deletion
+202
-0
ppgan/models/generators/mobile_resnet.py
ppgan/models/generators/mobile_resnet.py
+202
-0
未找到文件。
ppgan/models/generators/mobile_resnet.py
0 → 100644
浏览文件 @
a33c7090
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.nn
as
nn
import
functools
from
...modules.norm
import
build_norm_layer
from
.builder
import
GENERATORS
@
GENERATORS
.
register
()
class
MobileResnetGenerator
(
nn
.
Layer
):
def
__init__
(
self
,
input_channel
,
output_nc
,
ngf
=
64
,
norm_type
=
'instance'
,
use_dropout
=
False
,
n_blocks
=
9
,
padding_type
=
'reflect'
):
super
(
MobileResnetGenerator
,
self
).
__init__
()
norm_layer
=
build_norm_layer
(
norm_type
)
if
type
(
norm_layer
)
==
functools
.
partial
:
use_bias
=
norm_layer
.
func
==
InstanceNorm
else
:
use_bias
=
norm_layer
==
InstanceNorm
self
.
model
=
nn
.
LayerList
([
nn
.
ReflectionPad2d
([
3
,
3
,
3
,
3
]),
nn
.
Conv2d
(
input_channel
,
int
(
ngf
),
kernel_size
=
7
,
padding
=
0
,
bias_attr
=
use_bias
),
norm_layer
(
ngf
),
nn
.
ReLU
()
])
n_downsampling
=
2
for
i
in
range
(
n_downsampling
):
mult
=
2
**
i
self
.
model
.
extend
([
nn
.
Conv2d
(
ngf
*
mult
,
ngf
*
mult
*
2
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
,
bias_attr
=
use_bias
),
norm_layer
(
ngf
*
mult
*
2
),
nn
.
ReLU
()
])
mult
=
2
**
n_downsampling
for
i
in
range
(
n_blocks
):
self
.
model
.
extend
([
MobileResnetBlock
(
ngf
*
mult
,
ngf
*
mult
,
padding_type
=
padding_type
,
norm_layer
=
norm_layer
,
use_dropout
=
use_dropout
,
use_bias
=
use_bias
)
])
for
i
in
range
(
n_downsampling
):
mult
=
2
**
(
n_downsampling
-
i
)
output_size
=
(
i
+
1
)
*
128
self
.
model
.
extend
([
nn
.
ConvTranspose2d
(
ngf
*
mult
,
int
(
ngf
*
mult
/
2
),
kernel_size
=
3
,
stride
=
2
,
padding
=
1
,
output_padding
=
1
,
bias_attr
=
use_bias
),
norm_layer
(
int
(
ngf
*
mult
/
2
)),
nn
.
ReLU
()
])
self
.
model
.
extend
([
nn
.
ReflectionPad2d
([
3
,
3
,
3
,
3
])])
self
.
model
.
extend
([
nn
.
Conv2d
(
ngf
,
output_nc
,
kernel_size
=
7
,
padding
=
0
)])
self
.
model
.
extend
([
nn
.
Tanh
()])
def
forward
(
self
,
inputs
):
y
=
inputs
for
sublayer
in
self
.
model
:
y
=
sublayer
(
y
)
return
y
class
MobileResnetBlock
(
nn
.
Layer
):
def
__init__
(
self
,
in_c
,
out_c
,
padding_type
,
norm_layer
,
use_dropout
,
use_bias
):
super
(
MobileResnetBlock
,
self
).
__init__
()
self
.
padding_type
=
padding_type
self
.
use_dropout
=
use_dropout
self
.
conv_block
=
nn
.
LayerList
([])
p
=
0
if
self
.
padding_type
==
'reflect'
:
self
.
conv_block
.
extend
([
nn
.
ReflectionPad2d
([
1
,
1
,
1
,
1
])])
elif
self
.
padding_type
==
'replicate'
:
self
.
conv_block
.
extend
([
nn
.
ReplicationPad2d
([
1
,
1
,
1
,
1
])])
elif
self
.
padding_type
==
'zero'
:
p
=
1
else
:
raise
NotImplementedError
(
'padding [%s] is not implemented'
%
self
.
padding_type
)
self
.
conv_block
.
extend
([
SeparableConv2D
(
num_channels
=
in_c
,
num_filters
=
out_c
,
filter_size
=
3
,
padding
=
p
,
stride
=
1
),
norm_layer
(
out_c
),
nn
.
ReLU
()
])
self
.
conv_block
.
extend
([
nn
.
Dropout
(
0.5
)])
if
self
.
padding_type
==
'reflect'
:
self
.
conv_block
.
extend
([
nn
.
ReflectionPad2d
([
1
,
1
,
1
,
1
])])
elif
self
.
padding_type
==
'replicate'
:
self
.
conv_block
.
extend
([
nn
.
ReplicationPad2d
([
1
,
1
,
1
,
1
])])
elif
self
.
padding_type
==
'zero'
:
p
=
1
else
:
raise
NotImplementedError
(
'padding [%s] is not implemented'
%
self
.
padding_type
)
self
.
conv_block
.
extend
([
SeparableConv2D
(
num_channels
=
out_c
,
num_filters
=
in_c
,
filter_size
=
3
,
padding
=
p
,
stride
=
1
),
norm_layer
(
in_c
)
])
def
forward
(
self
,
inputs
):
y
=
inputs
for
sublayer
in
self
.
conv_block
:
y
=
sublayer
(
y
)
out
=
inputs
+
y
return
out
class
SeparableConv2D
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
padding
=
0
,
norm_layer
=
InstanceNorm
,
use_bias
=
True
,
scale_factor
=
1
,
stddev
=
0.02
):
super
(
SeparableConv2D
,
self
).
__init__
()
self
.
conv
=
nn
.
LayerList
([
nn
.
Conv2d
(
in_channels
=
num_channels
,
out_channels
=
num_channels
*
scale_factor
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
num_channels
,
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Normal
(
loc
=
0.0
,
scale
=
stddev
)),
bias_attr
=
use_bias
)
])
self
.
conv
.
extend
([
norm_layer
(
num_channels
*
scale_factor
)])
self
.
conv
.
extend
([
nn
.
Conv2d
(
in_channels
=
num_channels
*
scale_factor
,
out_channels
=
num_filters
,
kernel_size
=
1
,
stride
=
1
,
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Normal
(
loc
=
0.0
,
scale
=
stddev
)),
bias_attr
=
use_bias
)
])
def
forward
(
self
,
inputs
):
for
sublayer
in
self
.
conv
:
inputs
=
sublayer
(
inputs
)
return
inputs
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录