diff --git a/configs/aotgan.yaml b/configs/aotgan.yaml index e2d979abe7e429e9a37bb7c583fdfb8957d3fc95..a78bde3fd9bc79cd3d6514403f750344085de232 100644 --- a/configs/aotgan.yaml +++ b/configs/aotgan.yaml @@ -44,13 +44,13 @@ optimizer: optimG: name: Adam net_names: - - net_gen + - netG beta1: 0.5 beta2: 0.999 optimD: name: Adam net_names: - - net_des + - netD beta1: 0.5 beta2: 0.999 diff --git a/configs/gfpgan_ffhq1024.yaml b/configs/gfpgan_ffhq1024.yaml index 810428664cd8fd8a46280006dd4f7c000842b7b5..7c3ca9e2742af37a340c929244277e146391e1c7 100644 --- a/configs/gfpgan_ffhq1024.yaml +++ b/configs/gfpgan_ffhq1024.yaml @@ -165,7 +165,8 @@ dataset: # data loader use_shuffle: true - num_workers: 4 + # TODO fix out of memory for val while training + num_workers: 0 batch_size: 1 prefetch_mode: ~ @@ -180,7 +181,8 @@ dataset: mean: [0.5, 0.5, 0.5] std: [0.5, 0.5, 0.5] scale: 1 - num_workers: 4 + # TODO fix out of memory for val while training + num_workers: 0 batch_size: 8 phase: val diff --git a/configs/invdn_denoising.yaml b/configs/invdn_denoising.yaml index 44eda34cdc424ef40f1fd213e52579f8cea85c8f..ba228b660b09f91b399792704dfdb60ae704ae1b 100644 --- a/configs/invdn_denoising.yaml +++ b/configs/invdn_denoising.yaml @@ -17,7 +17,8 @@ model: dataset: train: name: InvDNDataset - num_workers: 10 + # TODO fix out of memory for val while training + num_workers: 0 batch_size: 14 # 4 GPUs opt: phase: train @@ -26,7 +27,8 @@ dataset: train_dir: data/SIDD_Medium_Srgb_Patches_512/train/ test: name: InvDNDataset - num_workers: 1 + # TODO fix out of memory for val while training + num_workers: 0 batch_size: 1 opt: phase: test diff --git a/configs/nafnet_denoising.yaml b/configs/nafnet_denoising.yaml index f3a8ddac5db0b332d6336e6765b97eddc84d2495..08a3a37819d819b50fb79b5b635e4a4e6e5f43d5 100644 --- a/configs/nafnet_denoising.yaml +++ b/configs/nafnet_denoising.yaml @@ -1,4 +1,4 @@ -total_iters: 3200000 +total_iters: 400000 output_dir: output_dir model: @@ -17,14 +17,16 @@ dataset: train: name: NAFNetTrain rgb_dir: data/SIDD/train - num_workers: 16 - batch_size: 8 # 1GPU + # TODO fix out of memory for val while training + num_workers: 0 + batch_size: 8 # 8GPU img_options: patch_size: 256 test: name: NAFNetVal rgb_dir: data/SIDD/val - num_workers: 1 + # TODO fix out of memory for val while training + num_workers: 0 batch_size: 1 img_options: patch_size: 256 @@ -34,10 +36,10 @@ export_model: lr_scheduler: name: CosineAnnealingRestartLR - learning_rate: !!float 125e-6 # num_gpu * 0.000125 - periods: [3200000] + learning_rate: 0.001 + periods: [400000] restart_weights: [1] - eta_min: !!float 1e-7 + eta_min: !!float 8e-7 validate: interval: 5000 diff --git a/configs/swinir_denoising.yaml b/configs/swinir_denoising.yaml index 2ecb5e9078392fa59ac5f8e94b1034d50648b87e..9aa317f10912934ed2317c38427d346cb72df620 100644 --- a/configs/swinir_denoising.yaml +++ b/configs/swinir_denoising.yaml @@ -1,4 +1,4 @@ -total_iters: 6400000 +total_iters: 420000 output_dir: output_dir model: @@ -20,8 +20,9 @@ model: dataset: train: name: SwinIRDataset - num_workers: 8 - batch_size: 2 # 1GPU + # TODO fix out of memory for val while training + num_workers: 0 + batch_size: 2 # 4GPU opt: phase: train n_channels: 3 @@ -31,7 +32,8 @@ dataset: dataroot_H: data/trainsets/trainH test: name: SwinIRDataset - num_workers: 1 + # TODO fix out of memory for val while training + num_workers: 0 batch_size: 1 opt: phase: test @@ -46,8 +48,8 @@ export_model: lr_scheduler: name: MultiStepDecay - learning_rate: 5e-5 # num_gpu * 5e-5 - milestones: [3200000, 4800000, 5600000, 6000000, 6400000] + learning_rate: 2e-4 + milestones: [210000, 305000, 345000, 385000, 420000] gamma: 0.5 validate: diff --git a/ppgan/engine/trainer.py b/ppgan/engine/trainer.py index 6bff8a70af7a9e421ed2c7ba79614a2fa1197eb4..0a48a505b56ea90e40b3263a439989c624477c3b 100755 --- a/ppgan/engine/trainer.py +++ b/ppgan/engine/trainer.py @@ -216,7 +216,7 @@ class Trainer: self.model.setup_train_mode(is_train=True) while self.current_iter < (self.total_iters + 1): self.current_epoch = iter_loader.epoch - self.inner_iter = self.current_iter % self.iters_per_epoch + self.inner_iter = self.current_iter % max(self.iters_per_epoch, 1) add_profiler_step(self.profiler_options) diff --git a/ppgan/models/aotgan_model.py b/ppgan/models/aotgan_model.py index 5b2970f67ce18ee803504b59e496cba6367ce47f..ab70f1f913723f1b809e4871f9f83bd4b76abe30 100644 --- a/ppgan/models/aotgan_model.py +++ b/ppgan/models/aotgan_model.py @@ -91,8 +91,8 @@ class AOTGANModel(BaseModel): super(AOTGANModel, self).__init__() # define nets - self.nets['net_gen'] = build_generator(generator) - self.nets['net_des'] = build_discriminator(discriminator) + self.nets['netG'] = build_generator(generator) + self.nets['netD'] = build_discriminator(discriminator) self.net_vgg = build_criterion(criterion) self.adv_loss = Adversal() @@ -111,9 +111,9 @@ class AOTGANModel(BaseModel): def forward(self): input_x = paddle.concat([self.img_masked, self.mask], 1) - self.pred_img = self.nets['net_gen'](input_x) + self.pred_img = self.nets['netG'](input_x) self.comp_img = (1 - self.mask) * self.img + self.mask * self.pred_img - self.visual_items['pred_img'] = self.pred_img + self.visual_items['pred_img'] = self.pred_img.detach() def train_iter(self, optimizers=None): self.forward() @@ -121,7 +121,7 @@ class AOTGANModel(BaseModel): self.losses['l1'] = l1_loss * self.l1_weight self.losses['perceptual'] = perceptual_loss * self.perceptual_weight self.losses['style'] = style_loss * self.style_weight - dis_loss, gen_loss = self.adv_loss(self.nets['net_des'], self.comp_img, self.img, self.mask) + dis_loss, gen_loss = self.adv_loss(self.nets['netD'], self.comp_img, self.img, self.mask) self.losses['adv_g'] = gen_loss * self.adversal_weight loss_d_fake = dis_loss[0] loss_d_real = dis_loss[1] diff --git a/requirements.txt b/requirements.txt index 6eeab8951a910d8d10c573f55d0619db78394519..4df4b5b2a3f3e64aca2261850813eeff55b3c77f 100644 --- a/requirements.txt +++ b/requirements.txt @@ -2,7 +2,7 @@ tqdm PyYAML>=5.1 scikit-image>=0.14.0 scipy>=1.1.0 -opencv-python==4.6.0.66 +opencv-python<=4.6.0.66 imageio==2.9.0 imageio-ffmpeg librosa==0.8.1 diff --git a/test_tipc/benchmark_train.sh b/test_tipc/benchmark_train.sh index 9422ca0dcfeb84fc42534c371cfc8c65f80ee952..d5e225d1238d6775d95ec3c6df4eceaddbb62d27 100644 --- a/test_tipc/benchmark_train.sh +++ b/test_tipc/benchmark_train.sh @@ -67,19 +67,6 @@ FILENAME=$new_filename # MODE must be one of ['benchmark_train'] MODE=$2 PARAMS=$3 -REST_ARGS=$4 - -# for log name -to_static="" -# parse "to_static" options and modify trainer into "to_static_trainer" -if [ $REST_ARGS = "to_static" ] || [ $PARAMS = "to_static" ] ;then - to_static="d2sT_" - sed -i 's/trainer:norm_train/trainer:to_static_train/g' $FILENAME - # clear PARAM contents - if [ $PARAMS = "to_static" ] ;then - PARAMS="" - fi -fi IFS=$'\n' # parser params from train_benchmark.txt @@ -162,6 +149,14 @@ else device_num_list=($device_num) fi +# for log name +to_static="" +# parse "to_static" options and modify trainer into "to_static_trainer" +if [[ ${model_type} = "dynamicTostatic" ]];then + to_static="d2sT_" + sed -i 's/trainer:norm_train/trainer:to_static_train/g' $FILENAME +fi + IFS="|" for batch_size in ${batch_size_list[*]}; do for precision in ${fp_items_list[*]}; do