Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleGAN
提交
4baea348
P
PaddleGAN
项目概览
PaddlePaddle
/
PaddleGAN
大约 1 年 前同步成功
通知
97
Star
7254
Fork
1210
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleGAN
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4baea348
编写于
12月 02, 2020
作者:
L
leesusu
提交者:
GitHub
12月 02, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add Wav2Lip generator. (#105)
* Add Wav2Lip generator.
上级
2a092607
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
405 addition
and
1 deletion
+405
-1
ppgan/models/generators/__init__.py
ppgan/models/generators/__init__.py
+1
-0
ppgan/models/generators/wav2lip.py
ppgan/models/generators/wav2lip.py
+403
-0
ppgan/modules/conv.py
ppgan/modules/conv.py
+1
-1
未找到文件。
ppgan/models/generators/__init__.py
浏览文件 @
4baea348
...
...
@@ -18,3 +18,4 @@ from .rrdb_net import RRDBNet
from
.makeup
import
GeneratorPSGANAttention
from
.resnet_ugatit
import
ResnetUGATITGenerator
from
.dcgenerator
import
DCGenerator
from
.wav2lip
import
Wav2Lip
ppgan/models/generators/wav2lip.py
0 → 100644
浏览文件 @
4baea348
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
from
paddle
import
nn
from
paddle.nn
import
functional
as
F
from
.builder
import
GENERATORS
from
...modules.conv
import
ConvBNRelu
from
...modules.conv
import
NonNormConv2d
from
...modules.conv
import
Conv2dTransposeRelu
@
GENERATORS
.
register
()
class
Wav2Lip
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
Wav2Lip
,
self
).
__init__
()
self
.
face_encoder_blocks
=
[
nn
.
Sequential
(
ConvBNRelu
(
6
,
16
,
kernel_size
=
7
,
stride
=
1
,
padding
=
3
)),
# 96,96
nn
.
Sequential
(
ConvBNRelu
(
16
,
32
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
),
# 48,48
ConvBNRelu
(
32
,
32
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
ConvBNRelu
(
32
,
32
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
)),
nn
.
Sequential
(
ConvBNRelu
(
32
,
64
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
),
# 24,24
ConvBNRelu
(
64
,
64
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
ConvBNRelu
(
64
,
64
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
ConvBNRelu
(
64
,
64
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
)),
nn
.
Sequential
(
ConvBNRelu
(
64
,
128
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
),
# 12,12
ConvBNRelu
(
128
,
128
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
ConvBNRelu
(
128
,
128
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
)),
nn
.
Sequential
(
ConvBNRelu
(
128
,
256
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
),
# 6,6
ConvBNRelu
(
256
,
256
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
ConvBNRelu
(
256
,
256
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
)),
nn
.
Sequential
(
ConvBNRelu
(
256
,
512
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
),
# 3,3
ConvBNRelu
(
512
,
512
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
),
nn
.
Sequential
(
ConvBNRelu
(
512
,
512
,
kernel_size
=
3
,
stride
=
1
,
padding
=
0
),
# 1, 1
ConvBNRelu
(
512
,
512
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)),
]
self
.
audio_encoder
=
nn
.
Sequential
(
ConvBNRelu
(
1
,
32
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
),
ConvBNRelu
(
32
,
32
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
ConvBNRelu
(
32
,
32
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
ConvBNRelu
(
32
,
64
,
kernel_size
=
3
,
stride
=
(
3
,
1
),
padding
=
1
),
ConvBNRelu
(
64
,
64
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
ConvBNRelu
(
64
,
64
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
ConvBNRelu
(
64
,
128
,
kernel_size
=
3
,
stride
=
3
,
padding
=
1
),
ConvBNRelu
(
128
,
128
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
ConvBNRelu
(
128
,
128
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
ConvBNRelu
(
128
,
256
,
kernel_size
=
3
,
stride
=
(
3
,
2
),
padding
=
1
),
ConvBNRelu
(
256
,
256
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
ConvBNRelu
(
256
,
512
,
kernel_size
=
3
,
stride
=
1
,
padding
=
0
),
ConvBNRelu
(
512
,
512
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
),
)
self
.
face_decoder_blocks
=
[
nn
.
Sequential
(
ConvBNRelu
(
512
,
512
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
),
),
nn
.
Sequential
(
Conv2dTransposeRelu
(
1024
,
512
,
kernel_size
=
3
,
stride
=
1
,
padding
=
0
),
# 3,3
ConvBNRelu
(
512
,
512
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
),
nn
.
Sequential
(
Conv2dTransposeRelu
(
1024
,
512
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
,
output_padding
=
1
),
ConvBNRelu
(
512
,
512
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
ConvBNRelu
(
512
,
512
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
),
# 6, 6
nn
.
Sequential
(
Conv2dTransposeRelu
(
768
,
384
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
,
output_padding
=
1
),
ConvBNRelu
(
384
,
384
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
ConvBNRelu
(
384
,
384
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
),
# 12, 12
nn
.
Sequential
(
Conv2dTransposeRelu
(
512
,
256
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
,
output_padding
=
1
),
ConvBNRelu
(
256
,
256
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
ConvBNRelu
(
256
,
256
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
),
# 24, 24
nn
.
Sequential
(
Conv2dTransposeRelu
(
320
,
128
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
,
output_padding
=
1
),
ConvBNRelu
(
128
,
128
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
ConvBNRelu
(
128
,
128
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
),
# 48, 48
nn
.
Sequential
(
Conv2dTransposeRelu
(
160
,
64
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
,
output_padding
=
1
),
ConvBNRelu
(
64
,
64
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
ConvBNRelu
(
64
,
64
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
residual
=
True
),
),
]
# 96,96
self
.
output_block
=
nn
.
Sequential
(
ConvBNRelu
(
80
,
32
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
),
nn
.
Conv2D
(
32
,
3
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
),
nn
.
Sigmoid
())
def
forward
(
self
,
audio_sequences
,
face_sequences
):
# audio_sequences = (B, T, 1, 80, 16)
B
=
audio_sequences
.
shape
[
0
]
input_dim_size
=
len
(
face_sequences
.
shape
)
if
input_dim_size
>
4
:
audio_sequences
=
paddle
.
concat
([
audio_sequences
[:,
i
]
for
i
in
range
(
audio_sequences
.
shape
[
1
])
],
axis
=
0
)
face_sequences
=
paddle
.
concat
([
face_sequences
[:,
:,
i
]
for
i
in
range
(
face_sequences
.
shape
[
2
])
],
axis
=
0
)
audio_embedding
=
self
.
audio_encoder
(
audio_sequences
)
# B, 512, 1, 1
feats
=
[]
x
=
face_sequences
for
f
in
self
.
face_encoder_blocks
:
x
=
f
(
x
)
feats
.
append
(
x
)
x
=
audio_embedding
for
f
in
self
.
face_decoder_blocks
:
x
=
f
(
x
)
try
:
x
=
paddle
.
concat
((
x
,
feats
[
-
1
]),
axis
=
1
)
except
Exception
as
e
:
print
(
x
.
shape
)
print
(
feats
[
-
1
].
shape
)
raise
e
feats
.
pop
()
x
=
self
.
output_block
(
x
)
if
input_dim_size
>
4
:
x
=
paddle
.
split
(
x
,
B
,
axis
=
0
)
# [(B, C, H, W)]
outputs
=
paddle
.
stack
(
x
,
axis
=
2
)
# (B, C, T, H, W)
else
:
outputs
=
x
return
outputs
class
Wav2LipDiscQual
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
Wav2LipDiscQual
,
self
).
__init__
()
self
.
face_encoder_blocks
=
[
nn
.
Sequential
(
NonNormConv2d
(
3
,
32
,
kernel_size
=
7
,
stride
=
1
,
padding
=
3
)),
# 48,96
nn
.
Sequential
(
NonNormConv2d
(
32
,
64
,
kernel_size
=
5
,
stride
=
(
1
,
2
),
padding
=
2
),
# 48,48
NonNormConv2d
(
64
,
64
,
kernel_size
=
5
,
stride
=
1
,
padding
=
2
)),
nn
.
Sequential
(
NonNormConv2d
(
64
,
128
,
kernel_size
=
5
,
stride
=
2
,
padding
=
2
),
# 24,24
NonNormConv2d
(
128
,
128
,
kernel_size
=
5
,
stride
=
1
,
padding
=
2
)),
nn
.
Sequential
(
NonNormConv2d
(
128
,
256
,
kernel_size
=
5
,
stride
=
2
,
padding
=
2
),
# 12,12
NonNormConv2d
(
256
,
256
,
kernel_size
=
5
,
stride
=
1
,
padding
=
2
)),
nn
.
Sequential
(
NonNormConv2d
(
256
,
512
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
),
# 6,6
NonNormConv2d
(
512
,
512
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
)),
nn
.
Sequential
(
NonNormConv2d
(
512
,
512
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
),
# 3,3
NonNormConv2d
(
512
,
512
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
),
),
nn
.
Sequential
(
NonNormConv2d
(
512
,
512
,
kernel_size
=
3
,
stride
=
1
,
padding
=
0
),
# 1, 1
NonNormConv2d
(
512
,
512
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)),
]
self
.
binary_pred
=
nn
.
Sequential
(
nn
.
Conv2D
(
512
,
1
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
),
nn
.
Sigmoid
())
self
.
label_noise
=
.
0
def
get_lower_half
(
self
,
face_sequences
):
return
face_sequences
[:,
:,
face_sequences
.
shape
[
2
]
//
2
:]
def
to_2d
(
self
,
face_sequences
):
B
=
face_sequences
.
shape
[
0
]
face_sequences
=
paddle
.
concat
(
[
face_sequences
[:,
:,
i
]
for
i
in
range
(
face_sequences
.
shape
[
2
])],
axis
=
0
)
return
face_sequences
def
perceptual_forward
(
self
,
false_face_sequences
):
false_face_sequences
=
self
.
to_2d
(
false_face_sequences
)
false_face_sequences
=
self
.
get_lower_half
(
false_face_sequences
)
false_feats
=
false_face_sequences
for
f
in
self
.
face_encoder_blocks
:
false_feats
=
f
(
false_feats
)
false_pred_loss
=
F
.
binary_cross_entropy
(
paddle
.
reshape
(
self
.
binary_pred
(
false_feats
),
(
len
(
false_feats
),
-
1
)),
paddle
.
ones
((
len
(
false_feats
),
1
)))
return
false_pred_loss
def
forward
(
self
,
face_sequences
):
face_sequences
=
self
.
to_2d
(
face_sequences
)
face_sequences
=
self
.
get_lower_half
(
face_sequences
)
x
=
face_sequences
for
f
in
self
.
face_encoder_blocks
:
x
=
f
(
x
)
return
paddle
.
reshape
(
self
.
binary_pred
(
x
),
(
len
(
x
),
-
1
))
ppgan/modules/conv.py
浏览文件 @
4baea348
...
...
@@ -47,7 +47,7 @@ class NonNormConv2d(nn.Layer):
return
self
.
act
(
out
)
class
Conv2dTranspseRelu
(
nn
.
Layer
):
class
Conv2dTransp
o
seRelu
(
nn
.
Layer
):
def
__init__
(
self
,
cin
,
cout
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录