diff --git a/docs/en_US/tutorials/styleganv2.md b/docs/en_US/tutorials/styleganv2.md index dc742c391418ddf486196c2ae9b5aa1440175bfd..4b151261ed9b3540d6b1a4ccca4d5a227ac7744a 100644 --- a/docs/en_US/tutorials/styleganv2.md +++ b/docs/en_US/tutorials/styleganv2.md @@ -54,10 +54,43 @@ python -u tools/styleganv2.py \ - n_col: the number of columns of the sampled picture - cpu: whether to use cpu inference, if not, please remove it from the command -### Train (TODO) - -In the future, training scripts will be added to facilitate users to train more types of StyleGAN V2 image generators. - +### Train + +#### prepapre datasets +you can get ffhq dataset from [here](https://drive.google.com/drive/folders/1u2xu7bSrWxrbUxk-dT-UvEJq8IjdmNTP) + +for convenient, we provide [images256x256.tar](https://paddlegan.bj.bcebos.com/datasets/images256x256.tar) + +The structure of stylegan data is as following: + ``` + PaddleGAN + ├── data + ├── ffhq + ├──images1024x1024 + ├── 00000.png + ├── 00001.png + ├── 00002.png + ├── 00003.png + ├── 00004.png + ├──images256x256 + ├── 00000.png + ├── 00001.png + ├── 00002.png + ├── 00003.png + ├── 00004.png + ├──custom_data + ├── img0.png + ├── img1.png + ├── img2.png + ├── img3.png + ├── img4.png + ... + ``` + +train model +``` +python tools/main.py -c configs/stylegan_v2_256_ffhq.yaml +``` ## Results