diff --git a/test_tipc/common_func.sh b/test_tipc/common_func.sh
new file mode 100644
index 0000000000000000000000000000000000000000..3f0fa66b77ff50b23b1e83dea506580f549f8ecf
--- /dev/null
+++ b/test_tipc/common_func.sh
@@ -0,0 +1,65 @@
+#!/bin/bash
+
+function func_parser_key(){
+ strs=$1
+ IFS=":"
+ array=(${strs})
+ tmp=${array[0]}
+ echo ${tmp}
+}
+
+function func_parser_value(){
+ strs=$1
+ IFS=":"
+ array=(${strs})
+ tmp=${array[1]}
+ echo ${tmp}
+}
+
+function func_set_params(){
+ key=$1
+ value=$2
+ if [ ${key}x = "null"x ];then
+ echo " "
+ elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then
+ echo " "
+ else
+ echo "${key}=${value}"
+ fi
+}
+
+function func_parser_params(){
+ strs=$1
+ IFS=":"
+ array=(${strs})
+ key=${array[0]}
+ tmp=${array[1]}
+ IFS="|"
+ res=""
+ for _params in ${tmp[*]}; do
+ IFS="="
+ array=(${_params})
+ mode=${array[0]}
+ value=${array[1]}
+ if [[ ${mode} = ${MODE} ]]; then
+ IFS="|"
+ #echo $(func_set_params "${mode}" "${value}")
+ echo $value
+ break
+ fi
+ IFS="|"
+ done
+ echo ${res}
+}
+
+function status_check(){
+ last_status=$1 # the exit code
+ run_command=$2
+ run_log=$3
+ if [ $last_status -eq 0 ]; then
+ echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log}
+ else
+ echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log}
+ fi
+}
+
diff --git a/test_tipc/configs/basicvsr/train_infer_python.txt b/test_tipc/configs/basicvsr/train_infer_python.txt
new file mode 100644
index 0000000000000000000000000000000000000000..da70c25262afffe15b9831bdc9998b1b1c50279b
--- /dev/null
+++ b/test_tipc/configs/basicvsr/train_infer_python.txt
@@ -0,0 +1,51 @@
+===========================train_params===========================
+model_name:basicvsr
+python:python3.7
+gpu_list:0
+##
+auto_cast:null
+total_iters:lite_train_lite_infer=5|whole_train_whole_infer=200
+output_dir:./output/
+dataset.train.batch_size:lite_train_lite_infer=1|whole_train_whole_infer=1
+pretrained_model:null
+train_model_name:basicvsr_reds*/*checkpoint.pdparams
+train_infer_img_dir:./data/basicvsr_reds/test
+null:null
+##
+trainer:norm_train
+norm_train:tools/main.py -c configs/basicvsr_reds.yaml -o dataset.train.dataset.num_clips=2
+pact_train:null
+fpgm_train:null
+distill_train:null
+null:null
+null:null
+##
+===========================eval_params===========================
+eval:null
+null:null
+##
+===========================infer_params===========================
+--output_dir:./output/
+load:null
+norm_export:tools/export_model.py -c configs/basicvsr_reds.yaml --inputs_size="1,6,3,180,320" --load
+quant_export:null
+fpgm_export:null
+distill_export:null
+export1:null
+export2:null
+inference_dir:basicvsrmodel_generator
+train_model:./inference/basicvsr/basicvsrmodel_generator
+infer_export:null
+infer_quant:False
+inference:tools/inference.py --model_type basicvsr -c configs/basicvsr_reds.yaml -o dataset.test.num_clips=2 dataset.test.number_frames=6
+--device:gpu
+null:null
+null:null
+null:null
+null:null
+null:null
+--model_path:
+null:null
+null:null
+--benchmark:True
+null:null
\ No newline at end of file
diff --git a/test_tipc/configs/cyclegan/train_infer_python.txt b/test_tipc/configs/cyclegan/train_infer_python.txt
new file mode 100644
index 0000000000000000000000000000000000000000..7eeb244c54584045a49de63c319d24814e63a64f
--- /dev/null
+++ b/test_tipc/configs/cyclegan/train_infer_python.txt
@@ -0,0 +1,51 @@
+===========================train_params===========================
+model_name:cyclegan
+python:python3.7
+gpu_list:0|0,1
+##
+auto_cast:null
+epochs:lite_train_lite_infer=5|whole_train_whole_infer=200
+output_dir:./output/
+dataset.train.batch_size:lite_train_lite_infer=1|whole_train_whole_infer=1
+pretrained_model:null
+train_model_name:cyclegan_horse2zebra*/*checkpoint.pdparams
+train_infer_img_dir:./data/horse2zebra/test
+null:null
+##
+trainer:norm_train
+norm_train:tools/main.py -c configs/cyclegan_horse2zebra.yaml -o
+pact_train:null
+fpgm_train:null
+distill_train:null
+null:null
+null:null
+##
+===========================eval_params===========================
+eval:null
+null:null
+##
+===========================infer_params===========================
+--output_dir:./output/
+load:null
+norm_export:tools/export_model.py -c configs/cyclegan_horse2zebra.yaml --inputs_size="-1,3,-1,-1;-1,3,-1,-1" --load
+quant_export:null
+fpgm_export:null
+distill_export:null
+export1:null
+export2:null
+inference_dir:cycleganmodel_netG_A
+train_model:./inference/cyclegan_horse2zebra/cycleganmodel_netG_A
+infer_export:null
+infer_quant:False
+inference:tools/inference.py --model_type cyclegan -c configs/cyclegan_horse2zebra.yaml
+--device:gpu
+null:null
+null:null
+null:null
+null:null
+null:null
+--model_path:
+null:null
+null:null
+--benchmark:True
+null:null
\ No newline at end of file
diff --git a/test_tipc/configs/fom/train_infer_python.txt b/test_tipc/configs/fom/train_infer_python.txt
new file mode 100644
index 0000000000000000000000000000000000000000..d2303556a722ebb31788749b6e3bc2d1fcedeebd
--- /dev/null
+++ b/test_tipc/configs/fom/train_infer_python.txt
@@ -0,0 +1,51 @@
+===========================train_params===========================
+model_name:fom
+python:python3.7
+gpu_list:0
+##
+auto_cast:null
+epochs:lite_train_lite_infer=10|whole_train_whole_infer=100
+output_dir:./output/
+dataset.train.batch_size:lite_train_lite_infer=8|whole_train_whole_infer=8
+pretrained_model:null
+train_model_name:firstorder_vox_256*/*checkpoint.pdparams
+train_infer_img_dir:./data/firstorder_vox_256/test
+null:null
+##
+trainer:norm_train
+norm_train:tools/main.py -c configs/firstorder_vox_256.yaml -o
+pact_train:null
+fpgm_train:null
+distill_train:null
+null:null
+null:null
+##
+===========================eval_params===========================
+eval:null
+null:null
+##
+===========================infer_params===========================
+--output_dir:./output/
+load:null
+norm_export:tools/export_model.py -c configs/firstorder_vox_256.yaml --inputs_size="1,3,256,256;1,3,256,256;1,10,2;1,10,2,2" --load
+quant_export:null
+fpgm_export:null
+distill_export:null
+export1:null
+export2:null
+inference_dir:fom_dy2st
+train_model:./inference/fom_dy2st/
+infer_export:null
+infer_quant:False
+inference:tools/fom_infer.py --driving_path data/first_order/Voxceleb/test --output_path infer_output/fom
+--device:gpu
+null:null
+null:null
+null:null
+null:null
+null:null
+--model_path:
+null:null
+null:null
+--benchmark:True
+null:null
\ No newline at end of file
diff --git a/test_tipc/configs/pix2pix/train_infer_python.txt b/test_tipc/configs/pix2pix/train_infer_python.txt
new file mode 100644
index 0000000000000000000000000000000000000000..ed5cf514b08963d176597f740ec1d216989a5eda
--- /dev/null
+++ b/test_tipc/configs/pix2pix/train_infer_python.txt
@@ -0,0 +1,51 @@
+===========================train_params===========================
+model_name:pix2pix
+python:python3.7
+gpu_list:0|0,1
+##
+auto_cast:null
+epochs:lite_train_lite_infer=5|whole_train_whole_infer=200
+output_dir:./output/
+dataset.train.batch_size:lite_train_lite_infer=1|whole_train_whole_infer=1
+pretrained_model:null
+train_model_name:pix2pix_facades*/*checkpoint.pdparams
+train_infer_img_dir:./data/facades/test
+null:null
+##
+trainer:norm_train
+norm_train:tools/main.py -c configs/pix2pix_facades.yaml -o
+pact_train:null
+fpgm_train:null
+distill_train:null
+null:null
+null:null
+##
+===========================eval_params===========================
+eval:null
+null:null
+##
+===========================infer_params===========================
+--output_dir:./output/
+load:null
+norm_export:tools/export_model.py -c configs/pix2pix_facades.yaml --inputs_size="-1,3,-1,-1" --load
+quant_export:null
+fpgm_export:null
+distill_export:null
+export1:null
+export2:null
+inference_dir:pix2pixmodel_netG
+train_model:./inference/pix2pix_facade/pix2pixmodel_netG
+infer_export:null
+infer_quant:False
+inference:tools/inference.py --model_type pix2pix -c configs/pix2pix_facades.yaml
+--device:cpu
+null:null
+null:null
+null:null
+null:null
+null:null
+--model_path:
+null:null
+null:null
+--benchmark:True
+null:null
\ No newline at end of file
diff --git a/test_tipc/configs/stylegan2/train_infer_python.txt b/test_tipc/configs/stylegan2/train_infer_python.txt
new file mode 100644
index 0000000000000000000000000000000000000000..99cfccf7db2e148e42b708543e4179544a5a7058
--- /dev/null
+++ b/test_tipc/configs/stylegan2/train_infer_python.txt
@@ -0,0 +1,51 @@
+===========================train_params===========================
+model_name:stylegan2
+python:python3.7
+gpu_list:0
+##
+auto_cast:null
+total_iters::lite_train_lite_infer=10|whole_train_whole_infer=800
+output_dir:./output/
+dataset.train.batch_size:lite_train_lite_infer=3|whole_train_whole_infer=3
+pretrained_model:null
+train_model_name:stylegan_v2_256_ffhq*/*checkpoint.pdparams
+train_infer_img_dir:null
+null:null
+##
+trainer:norm_train
+norm_train:tools/main.py -c configs/stylegan_v2_256_ffhq.yaml -o
+pact_train:null
+fpgm_train:null
+distill_train:null
+null:null
+null:null
+##
+===========================eval_params===========================
+eval:null
+null:null
+##
+===========================infer_params===========================
+--output_dir:./output/
+load:null
+norm_export:tools/export_model.py -c configs/stylegan_v2_256_ffhq.yaml --inputs_size="1,1,512;1,1" --load
+quant_export:null
+fpgm_export:null
+distill_export:null
+export1:null
+export2:null
+inference_dir:stylegan2model_gen
+train_model:./inference/stylegan2/stylegan2model_gen
+infer_export:null
+infer_quant:False
+inference:tools/inference.py --model_type stylegan2 -c configs/stylegan_v2_256_ffhq.yaml
+--device:gpu
+null:null
+null:null
+null:null
+null:null
+null:null
+--model_path:
+null:null
+null:null
+--benchmark:True
+null:null
\ No newline at end of file
diff --git a/test_tipc/docs/test_train_inference_python.md b/test_tipc/docs/test_train_inference_python.md
new file mode 100644
index 0000000000000000000000000000000000000000..daca3c3476eb92a61f01b263ec959e8a7d3e626d
--- /dev/null
+++ b/test_tipc/docs/test_train_inference_python.md
@@ -0,0 +1,127 @@
+# Linux端基础训练预测功能测试
+
+Linux端基础训练预测功能测试的主程序为`test_train_inference_python.sh`,可以测试基于Python的模型训练、评估、推理等基本功能。
+
+
+## 1. 测试结论汇总
+
+- 训练相关:
+
+| 算法论文 | 模型名称 | 模型类型 | 基础
训练预测 | 更多
训练方式 | 模型压缩 | 其他预测部署 |
+| :--- | :--- | :----: | :--------: | :---- | :---- | :---- |
+| Pix2Pix |Pix2Pix | 生成 | 支持 | 多机多卡 | | |
+| CycleGAN |CycleGAN | 生成 | 支持 | 多机多卡 | | |
+| StyleGAN2 |StyleGAN2 | 生成 | 支持 | 多机多卡 | | |
+| FOMM |FOMM | 生成 | 支持 | 多机多卡 | | |
+| BasicVSR |BasicVSR | 超分 | 支持 | 多机多卡 | | |
+|PP-MSVSR|PP-MSVSR | 超分|
+
+- 预测相关:预测功能汇总如下,
+
+| 模型类型 |device | batchsize | tensorrt | mkldnn | cpu多线程 |
+| ---- | ---- | ---- | :----: | :----: | :----: |
+| 正常模型 | GPU | 1/6 | fp32 | - | - |
+
+
+
+## 2. 测试流程
+
+运行环境配置请参考[文档](../../docs/zh_CN/install.md)的内容配置运行环境。
+
+### 2.1 安装依赖
+- 安装PaddlePaddle >= 2.1
+- 安装PaddleGAN依赖
+ ```
+ pip install -v -e .
+ ```
+- 安装autolog(规范化日志输出工具)
+ ```
+ git clone https://github.com/LDOUBLEV/AutoLog
+ cd AutoLog
+ pip3 install -r requirements.txt
+ python3 setup.py bdist_wheel
+ pip3 install ./dist/auto_log-1.0.0-py3-none-any.whl
+ cd ../
+ ```
+
+
+### 2.2 功能测试
+先运行`prepare.sh`准备数据和模型,然后运行`test_train_inference_python.sh`进行测试,最终在```test_tipc/output```目录下生成`python_infer_*.log`格式的日志文件。
+
+
+`test_train_inference_python.sh`包含5种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是:
+
+- 模式1:lite_train_lite_infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度;
+```shell
+bash test_tipc/prepare.sh ./test_tipc/configs/basicvsr/train_infer_python.txt 'lite_train_lite_infer'
+bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/basicvsr/train_infer_python.txt 'lite_train_lite_infer'
+```
+
+- 模式2:lite_train_whole_infer,使用少量数据训练,一定量数据预测,用于验证训练后的模型执行预测,预测速度是否合理;
+```shell
+bash test_tipc/prepare.sh ./test_tipc/configs/basicvsr/train_infer_python.txt 'lite_train_whole_infer'
+bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/basicvsr/train_infer_python.txt 'lite_train_whole_infer'
+```
+
+- 模式3:whole_infer,不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度;
+```shell
+bash test_tipc/prepare.sh ./test_tipc/configs/basicvsr/train_infer_python.txt 'whole_infer'
+bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/basicvsr/train_infer_python.txt 'whole_infer'
+```
+
+- 模式4:whole_train_whole_infer,CE: 全量数据训练,全量数据预测,验证模型训练精度,预测精度,预测速度;
+```shell
+bash test_tipc/prepare.sh ./test_tipc/configs/basicvsr/train_infer_python.txt 'whole_train_whole_infer'
+bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/basicvsr/train_infer_python.txt 'whole_train_whole_infer'
+```
+
+运行相应指令后,在`test_tipc/output`文件夹下自动会保存运行日志。如'lite_train_lite_infer'模式下,会运行训练+inference的链条,因此,在`test_tipc/output`文件夹有以下文件:
+```
+test_tipc/output/
+|- results_python.log # 运行指令状态的日志
+|- norm_train_gpus_0_autocast_null/ # GPU 0号卡上正常训练的训练日志和模型保存文件夹
+......
+```
+
+其中`results_python.log`中包含了每条指令的运行状态,如果运行成功会输出:
+```
+Run successfully with command - python3.7 tools/main.py -c configs/basicvsr_reds.yaml -o dataset.train.dataset.num_clips=2 output_dir=./test_tipc/output/norm_train_gpus_0_autocast_null total_iters=5 dataset.train.batch_size=1 !
+-=Run successfully with command - python3.7 tools/export_model.py -c configs/basicvsr_reds.yaml --inputs_size="1,6,3,180,320" --load ./test_tipc/output/norm_train_gpus_0_autocast_null/basicvsr_reds-2021-11-22-07-18/iter_1_checkpoint.pdparams --output_dir ./test_tipc/output/norm_train_gpus_0_autocast_null!
+......
+```
+如果运行失败,会输出:
+```
+Run failed with command - python3.7 tools/main.py -c configs/basicvsr_reds.yaml -o dataset.train.dataset.num_clips=2 output_dir=./test_tipc/output/norm_train_gpus_0_autocast_null total_iters=5 dataset.train.batch_size=1 ! !
+Run failed with command - python3.7 tools/export_model.py -c configs/basicvsr_reds.yaml --inputs_size="1,6,3,180,320" --load ./test_tipc/output/norm_train_gpus_0_autocast_null/basicvsr_reds-2021-11-22-07-18/iter_1_checkpoint.pdparams --output_dir ./test_tipc/output/norm_train_gpus_0_autocast_null!
+......
+```
+可以很方便的根据`results_python.log`中的内容判定哪一个指令运行错误。
+
+
+### 2.3 精度测试
+
+使用compare_results.py脚本比较模型预测的结果是否符合预期,主要步骤包括:
+- 提取日志中的预测坐标;
+- 从本地文件中提取保存好的坐标结果;
+- 比较上述两个结果是否符合精度预期,误差大于设置阈值时会报错。
+
+#### 使用方式
+运行命令:
+```shell
+python3.7 test_tipc/compare_results.py --gt_file=./test_tipc/results/python_*.txt --log_file=./test_tipc/output/python_*.log --atol=1e-3 --rtol=1e-3
+```
+
+参数介绍:
+- gt_file: 指向事先保存好的预测结果路径,支持*.txt 结尾,会自动索引*.txt格式的文件,文件默认保存在test_tipc/result/ 文件夹下
+- log_file: 指向运行test_tipc/test_train_inference_python.sh 脚本的infer模式保存的预测日志,预测日志中打印的有预测结果,
+- atol: 设置的绝对误差
+- rtol: 设置的相对误差
+
+#### 运行结果
+
+正常运行效果如下图:
+
+
+出现不一致结果时的运行输出:
+
+
diff --git a/test_tipc/prepare.sh b/test_tipc/prepare.sh
new file mode 100644
index 0000000000000000000000000000000000000000..b967a47e61019b122948d2b670effee8a02dc05e
--- /dev/null
+++ b/test_tipc/prepare.sh
@@ -0,0 +1,128 @@
+#!/bin/bash
+FILENAME=$1
+
+# MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer',
+# 'whole_infer']
+
+MODE=$2
+
+dataline=$(cat ${FILENAME})
+
+# parser params
+IFS=$'\n'
+lines=(${dataline})
+function func_parser_key(){
+ strs=$1
+ IFS=":"
+ array=(${strs})
+ tmp=${array[0]}
+ echo ${tmp}
+}
+function func_parser_value(){
+ strs=$1
+ IFS=":"
+ array=(${strs})
+ tmp=${array[1]}
+ echo ${tmp}
+}
+IFS=$'\n'
+# The training params
+model_name=$(func_parser_value "${lines[1]}")
+
+trainer_list=$(func_parser_value "${lines[14]}")
+
+# MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer',
+# 'whole_infer']
+MODE=$2
+
+if [ ${MODE} = "lite_train_lite_infer" ];then
+ if [ ${model_name} == "pix2pix" ]; then
+ rm -rf ./data/facades*
+ rm -rf ./data/pix2pix*
+ wget -nc -P ./data/ https://paddlegan.bj.bcebos.com/datasets/pix2pix_facade_lite.tar --no-check-certificate
+ cd ./data/ && tar xf pix2pix_facade_lite.tar && cd ../
+ elif [ ${model_name} == "cyclegan" ]; then
+ rm -rf ./data/horse2zebra*
+ wget -nc -P ./data/ https://paddlegan.bj.bcebos.com/datasets/cyclegan_horse2zebra_lite.tar --no-check-certificate
+ cd ./data/ && tar xf cyclegan_horse2zebra_lite.tar && cd ../
+ elif [ ${model_name} == "stylegan2" ]; then
+ rm -rf ./data/ffhq*
+ wget -nc -P ./data/ https://paddlegan.bj.bcebos.com/datasets/ffhq.tar --no-check-certificate
+ cd ./data/ && tar xf ffhq.tar && cd ../
+ elif [ ${model_name} == "fom" ]; then
+ rm -rf ./data/first_order*
+ wget -nc -P ./data/ https://paddlegan.bj.bcebos.com/datasets/fom_lite.tar --no-check-certificate --no-check-certificate
+ cd ./data/ && tar xf fom_lite.tar && cd ../
+ elif [ ${model_name} == "basicvsr" ]; then
+ rm -rf ./data/REDS*
+ wget -nc -P ./data/ https://paddlegan.bj.bcebos.com/datasets/basicvsr_lite.tar --no-check-certificate
+ cd ./data/ && tar xf basicvsr_lite.tar && cd ../
+ fi
+
+elif [ ${MODE} = "whole_train_whole_infer" ];then
+ if [ ${model_name} == "pix2pix" ]; then
+ rm -rf ./data/facades*
+ wget -nc -P ./data/ http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/facades.tar.gz --no-check-certificate
+ cd ./data/ && tar -xzf facades.tar.gz && cd ../
+ elif [ ${model_name} == "cyclegan" ]; then
+ rm -rf ./data/horse2zebra*
+ wget -nc -P ./data/ https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/horse2zebra.zip --no-check-certificate
+ cd ./data/ && unzip horse2zebra.zip && cd ../
+ fi
+elif [ ${MODE} = "lite_train_whole_infer" ];then
+ if [ ${model_name} == "pix2pix" ]; then
+ rm -rf ./data/facades*
+ wget -nc -P ./data/ https://paddlegan.bj.bcebos.com/datasets/pix2pix_facade_lite.tar --no-check-certificate
+ cd ./data/ && tar xf pix2pix_facade_lite.tar && cd ../
+ elif [ ${model_name} == "cyclegan" ]; then
+ rm -rf ./data/horse2zebra*
+ wget -nc -P ./data/ https://paddlegan.bj.bcebos.com/datasets/cyclegan_horse2zebra_lite.tar --no-check-certificate --no-check-certificate
+ cd ./data/ && tar xf cyclegan_horse2zebra_lite.tar && cd ../
+ elif [ ${model_name} == "fom" ]; then
+ rm -rf ./data/first_order*
+ wget -nc -P ./data/ https://paddlegan.bj.bcebos.com/datasets/fom_lite.tar --no-check-certificate --no-check-certificate
+ cd ./data/ && tar xf fom_lite.tar && cd ../
+ elif [ ${model_name} == "stylegan2" ]; then
+ rm -rf ./data/ffhq*
+ wget -nc -P ./data/ https://paddlegan.bj.bcebos.com/datasets/ffhq.tar --no-check-certificate
+ cd ./data/ && tar xf ffhq.tar && cd ../
+ elif [ ${model_name} == "basicvsr" ]; then
+ rm -rf ./data/REDS*
+ wget -nc -P ./data/ https://paddlegan.bj.bcebos.com/datasets/basicvsr_lite.tar --no-check-certificate
+ cd ./data/ && tar xf basicvsr_lite.tar && cd ../
+ fi
+elif [ ${MODE} = "whole_infer" ];then
+ if [ ${model_name} = "pix2pix" ]; then
+ rm -rf ./data/facades*
+ wget -nc -P ./inference https://paddlegan.bj.bcebos.com/static_model/pix2pix_facade.tar --no-check-certificate
+ wget -nc -P ./data https://paddlegan.bj.bcebos.com/datasets/facades_test.tar --no-check-certificate
+ cd ./data && tar xf facades_test.tar && mv facades_test facades && cd ../
+ cd ./inference && tar xf pix2pix_facade.tar && cd ../
+ elif [ ${model_name} = "cyclegan" ]; then
+ rm -rf ./data/horse2zebra*
+ wget -nc -P ./inference https://paddlegan.bj.bcebos.com/static_model/cyclegan_horse2zebra.tar --no-check-certificate
+ wget -nc -P ./data https://paddlegan.bj.bcebos.com/datasets/cyclegan_horse2zebra_test.tar --no-check-certificate
+ cd ./data && tar xf cyclegan_horse2zebra_test.tar && mv cyclegan_test horse2zebra && cd ../
+ cd ./inference && tar xf cyclegan_horse2zebra.tar && cd ../
+ elif [ ${model_name} == "fom" ]; then
+ rm -rf ./data/first_order*
+ wget -nc -P ./data/ https://paddlegan.bj.bcebos.com/datasets/fom_lite_test.tar --no-check-certificate
+ wget -nc -P ./inference https://paddlegan.bj.bcebos.com/static_model/fom_dy2st.tar --no-check-certificate
+ cd ./data/ && tar xf fom_lite_test.tar && cd ../
+ cd ./inference && tar xf fom_dy2st.tar && cd ../
+ elif [ ${model_name} == "stylegan2" ]; then
+ rm -rf ./data/ffhq*
+ wget -nc -P ./data/ https://paddlegan.bj.bcebos.com/datasets/ffhq.tar --no-check-certificate
+ wget -nc -P ./inference https://paddlegan.bj.bcebos.com/static_model/stylegan2_1024.tar --no-check-certificate
+ cd ./inference && tar xf stylegan2_1024.tar && cd ../
+ cd ./data/ && tar xf ffhq.tar && cd ../
+ elif [ ${model_name} == "basicvsr" ]; then
+ rm -rf ./data/basic*
+ rm -rf ./inference/basic*
+ wget -nc -P ./data/ https://paddlegan.bj.bcebos.com/datasets/basicvsr_lite_test.tar --no-check-certificate
+ wget -nc -P ./inference https://paddlegan.bj.bcebos.com/static_model/basicvsr.tar --no-check-certificate
+ cd ./inference && tar xf basicvsr.tar && cd ../
+ cd ./data/ && tar xf basicvsr_lite_test.tar && cd ../
+ fi
+
+fi
diff --git a/test_tipc/readme.md b/test_tipc/readme.md
new file mode 100644
index 0000000000000000000000000000000000000000..d4df724fc66d144f450a4d3fe77e22f82c0b1851
--- /dev/null
+++ b/test_tipc/readme.md
@@ -0,0 +1,74 @@
+
+# 飞桨训推一体认证
+
+## 1. 简介
+
+飞桨除了基本的模型训练和预测,还提供了支持多端多平台的高性能推理部署工具。本文档提供了PaddleGAN中所有模型的飞桨训推一体认证 (Training and Inference Pipeline Certification(TIPC)) 信息和测试工具,方便用户查阅每种模型的训练推理部署打通情况,并可以进行一键测试。
+
+## 2. 汇总信息
+
+打通情况汇总如下,已填写的部分表示可以使用本工具进行一键测试,未填写的表示正在支持中。
+
+**字段说明:**
+- 基础训练预测:包括模型训练、Paddle Inference Python预测。
+- 更多训练方式:包括多机多卡、混合精度。
+- 模型压缩:包括裁剪、离线/在线量化、蒸馏。
+- 其他预测部署:包括Paddle Inference C++预测、Paddle Serving部署、Paddle-Lite部署等。
+
+更详细的mkldnn、Tensorrt等预测加速相关功能的支持情况可以查看各测试工具的[更多教程](#more)。
+
+| 算法论文 | 模型名称 | 模型类型 | 基础
训练预测 | 更多
训练方式 | 模型压缩 | 其他预测部署 |
+| :--- | :--- | :----: | :--------: | :---- | :---- | :---- |
+| Pix2Pix |Pix2Pix | 生成 | 支持 | 多机多卡 | | |
+| CycleGAN |CycleGAN | 生成 | 支持 | 多机多卡 | | |
+| StyleGAN2 |StyleGAN2 | 生成 | 支持 | 多机多卡 | | |
+| FOMM |FOMM | 生成 | 支持 | 多机多卡 | | |
+| BasicVSR |BasicVSR | 超分 | 支持 | 多机多卡 | | |
+|PP-MSVSR|PP-MSVSR | 超分|
+
+
+
+
+## 3. 一键测试工具使用
+### 目录介绍
+
+```shell
+test_tipc/
+├── configs/ # 配置文件目录
+ ├── basicvsr_reds.yaml # 测试basicvsr模型训练的yaml文件
+ ├── cyclegan_horse2zebra.yaml # 测试cyclegan模型训练的yaml文件
+ ├── firstorder_vox_256.yaml # 测试fomm模型训练的yaml文件
+ ├── pix2pix_facedes.yaml # 测试pix2pix模型训练的yaml文件
+ ├── stylegan_v2_256_ffhq.yaml # 测试stylegan模型训练的yaml文件
+
+ ├── ...
+├── results/ # 预先保存的预测结果,用于和实际预测结果进行精读比对
+ ├── python_basicvsr_results_fp32.txt # 预存的basicvsr模型python预测fp32精度的结果
+ ├── python_cyclegan_results_fp32.txt # 预存的cyclegan模型python预测fp32精度的结果
+ ├── python_pix2pix_results_fp32.txt # 预存的pix2pix模型python预测的fp32精度的结果
+ ├── python_stylegan_results_fp32.txt # 预存的stylegan模型python预测的fp32精度的结果
+ ├── ...
+├── prepare.sh # 完成test_*.sh运行所需要的数据和模型下载
+├── test_train_inference_python.sh # 测试python训练预测的主程序
+├── compare_results.py # 用于对比log中的预测结果与results中的预存结果精度误差是否在限定范围内
+└── readme.md # 使用文档
+```
+
+### 测试流程
+使用本工具,可以测试不同功能的支持情况,以及预测结果是否对齐,测试流程如下:
+