syncnet.py 5.3 KB
Newer Older
1 2 3
import paddle
from paddle import nn
from paddle.nn import functional as F
L
lijianshe02 已提交
4
import sys
5
from ...modules.conv import ConvBNRelu
L
lijianshe02 已提交
6 7
#from conv import ConvBNRelu
from .builder import DISCRIMINATORS
8 9


L
lijianshe02 已提交
10
@DISCRIMINATORS.register()
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
class SyncNetColor(nn.Layer):
    def __init__(self):
        super(SyncNetColor, self).__init__()

        self.face_encoder = nn.Sequential(
            ConvBNRelu(15, 32, kernel_size=(7, 7), stride=1, padding=3),
            ConvBNRelu(32, 64, kernel_size=5, stride=(1, 2), padding=1),
            ConvBNRelu(64,
                       64,
                       kernel_size=3,
                       stride=1,
                       padding=1,
                       residual=True),
            ConvBNRelu(64,
                       64,
                       kernel_size=3,
                       stride=1,
                       padding=1,
                       residual=True),
            ConvBNRelu(64, 128, kernel_size=3, stride=2, padding=1),
            ConvBNRelu(128,
                       128,
                       kernel_size=3,
                       stride=1,
                       padding=1,
                       residual=True),
            ConvBNRelu(128,
                       128,
                       kernel_size=3,
                       stride=1,
                       padding=1,
                       residual=True),
            ConvBNRelu(128,
                       128,
                       kernel_size=3,
                       stride=1,
                       padding=1,
                       residual=True),
            ConvBNRelu(128, 256, kernel_size=3, stride=2, padding=1),
            ConvBNRelu(256,
                       256,
                       kernel_size=3,
                       stride=1,
                       padding=1,
                       residual=True),
            ConvBNRelu(256,
                       256,
                       kernel_size=3,
                       stride=1,
                       padding=1,
                       residual=True),
            ConvBNRelu(256, 512, kernel_size=3, stride=2, padding=1),
            ConvBNRelu(512,
                       512,
                       kernel_size=3,
                       stride=1,
                       padding=1,
                       residual=True),
            ConvBNRelu(512,
                       512,
                       kernel_size=3,
                       stride=1,
                       padding=1,
                       residual=True),
            ConvBNRelu(512, 512, kernel_size=3, stride=2, padding=1),
            ConvBNRelu(512, 512, kernel_size=3, stride=1, padding=0),
            ConvBNRelu(512, 512, kernel_size=1, stride=1, padding=0),
        )

        self.audio_encoder = nn.Sequential(
            ConvBNRelu(1, 32, kernel_size=3, stride=1, padding=1),
            ConvBNRelu(32,
                       32,
                       kernel_size=3,
                       stride=1,
                       padding=1,
                       residual=True),
            ConvBNRelu(32,
                       32,
                       kernel_size=3,
                       stride=1,
                       padding=1,
                       residual=True),
            ConvBNRelu(32, 64, kernel_size=3, stride=(3, 1), padding=1),
            ConvBNRelu(64,
                       64,
                       kernel_size=3,
                       stride=1,
                       padding=1,
                       residual=True),
            ConvBNRelu(64,
                       64,
                       kernel_size=3,
                       stride=1,
                       padding=1,
                       residual=True),
            ConvBNRelu(64, 128, kernel_size=3, stride=3, padding=1),
            ConvBNRelu(128,
                       128,
                       kernel_size=3,
                       stride=1,
                       padding=1,
                       residual=True),
            ConvBNRelu(128,
                       128,
                       kernel_size=3,
                       stride=1,
                       padding=1,
                       residual=True),
            ConvBNRelu(128, 256, kernel_size=3, stride=(3, 2), padding=1),
            ConvBNRelu(256,
                       256,
                       kernel_size=3,
                       stride=1,
                       padding=1,
                       residual=True),
            ConvBNRelu(256,
                       256,
                       kernel_size=3,
                       stride=1,
                       padding=1,
                       residual=True),
            ConvBNRelu(256, 512, kernel_size=3, stride=1, padding=0),
            ConvBNRelu(512, 512, kernel_size=1, stride=1, padding=0),
        )

    def forward(self, audio_sequences,
                face_sequences):  # audio_sequences := (B, dim, T)
        face_embedding = self.face_encoder(face_sequences)
        audio_embedding = self.audio_encoder(audio_sequences)

        audio_embedding = audio_embedding.reshape(
            [audio_embedding.shape[0], -1])
        face_embedding = face_embedding.reshape([face_embedding.shape[0], -1])

        audio_embedding = F.normalize(audio_embedding, p=2, axis=1)
        face_embedding = F.normalize(face_embedding, p=2, axis=1)

        return audio_embedding, face_embedding