api.py 2.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from enum import Enum
import numpy as np
import cv2

from .utils import *
import sys


class LandmarksType(Enum):
    """Enum class defining the type of landmarks to detect.

    ``_2D`` - the detected points ``(x,y)`` are detected in a 2D space and follow the visible contour of the face
    ``_2halfD`` - this points represent the projection of the 3D points into 3D
    ``_3D`` - detect the points ``(x,y,z)``` in a 3D space

    """
    _2D = 1
    _2halfD = 2
    _3D = 3


class NetworkSize(Enum):
    # TINY = 1
    # SMALL = 2
    # MEDIUM = 3
    LARGE = 4

    def __new__(cls, value):
        member = object.__new__(cls)
        member._value_ = value
        return member

    def __int__(self):
        return self.value


class FaceAlignment:
    def __init__(self,
                 landmarks_type,
                 network_size=NetworkSize.LARGE,
                 flip_input=False,
                 face_detector='sfd',
                 verbose=False):
        self.flip_input = flip_input
        self.landmarks_type = landmarks_type
        self.verbose = verbose

        network_size = int(network_size)

        # Get the face detector
        face_detector_module = __import__(
L
leesusu 已提交
67 68
            'ppgan.faceutils.face_detection.detection.' + face_detector,
            globals(), locals(), [face_detector], 0)
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
        self.face_detector = face_detector_module.FaceDetector(verbose=verbose)

    def get_detections_for_batch(self, images):
        images = images[..., ::-1]
        detected_faces = self.face_detector.detect_from_batch(images.copy())
        results = []

        for i, d in enumerate(detected_faces):
            if len(d) == 0:
                results.append(None)
                continue
            d = d[0]
            d = np.clip(d, 0, None)

            x1, y1, x2, y2 = map(int, d[:-1])
            results.append((x1, y1, x2, y2))

        return results