wav2lip_predictor.py 9.5 KB
Newer Older
L
lijianshe02 已提交
1 2 3 4 5 6 7 8
from os import listdir, path, makedirs
import platform
import numpy as np
import scipy, cv2, os, sys, argparse
import json, subprocess, random, string
from tqdm import tqdm
from glob import glob
import paddle
9
from paddle.utils.download import get_weights_path_from_url
L
lijianshe02 已提交
10 11 12 13 14
from ppgan.faceutils import face_detection
from ppgan.utils import audio
from ppgan.models.generators.wav2lip import Wav2Lip
from .base_predictor import BasePredictor

15
WAV2LIP_WEIGHT_URL = 'https://paddlegan.bj.bcebos.com/models/wav2lip_hq.pdparams'
L
lijianshe02 已提交
16 17 18 19 20 21
mel_step_size = 16


class Wav2LipPredictor(BasePredictor):
    def __init__(self, args):
        self.args = args
22 23
        if os.path.isfile(self.args.face) and path.basename(
                self.args.face).split('.')[1] in ['jpg', 'png', 'jpeg']:
L
lijianshe02 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
            self.args.static = True
        self.img_size = 96
        makedirs('./temp', exist_ok=True)

    def get_smoothened_boxes(self, boxes, T):
        for i in range(len(boxes)):
            if i + T > len(boxes):
                window = boxes[len(boxes) - T:]
            else:
                window = boxes[i:i + T]
            boxes[i] = np.mean(window, axis=0)
        return boxes

    def face_detect(self, images):
        detector = face_detection.FaceAlignment(
L
lijianshe02 已提交
39 40 41
            face_detection.LandmarksType._2D,
            flip_input=False,
            face_detector=self.args.face_detector)
L
lijianshe02 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

        batch_size = self.args.face_det_batch_size

        while 1:
            predictions = []
            try:
                for i in tqdm(range(0, len(images), batch_size)):
                    predictions.extend(
                        detector.get_detections_for_batch(
                            np.array(images[i:i + batch_size])))
            except RuntimeError:
                if batch_size == 1:
                    raise RuntimeError(
                        'Image too big to run face detection on GPU. Please use the --resize_factor argument'
                    )
                batch_size //= 2
                print('Recovering from OOM error; New batch size: {}'.format(
                    batch_size))
                continue
            break

        results = []
        pady1, pady2, padx1, padx2 = self.args.pads
        for rect, image in zip(predictions, images):
            if rect is None:
                cv2.imwrite(
                    'temp/faulty_frame.jpg',
                    image)  # check this frame where the face was not detected.
                raise ValueError(
                    'Face not detected! Ensure the video contains a face in all the frames.'
                )

            y1 = max(0, rect[1] - pady1)
            y2 = min(image.shape[0], rect[3] + pady2)
            x1 = max(0, rect[0] - padx1)
            x2 = min(image.shape[1], rect[2] + padx2)

            results.append([x1, y1, x2, y2])

        boxes = np.array(results)
        if not self.args.nosmooth: boxes = self.get_smoothened_boxes(boxes, T=5)
        results = [[image[y1:y2, x1:x2], (y1, y2, x1, x2)]
                   for image, (x1, y1, x2, y2) in zip(images, boxes)]

        del detector
        return results

    def datagen(self, frames, mels):
        img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []

        if self.args.box[0] == -1:
            if not self.args.static:
                face_det_results = self.face_detect(
                    frames)  # BGR2RGB for CNN face detection
            else:
                face_det_results = self.face_detect([frames[0]])
        else:
            print(
                'Using the specified bounding box instead of face detection...')
            y1, y2, x1, x2 = self.args.box
            face_det_results = [[f[y1:y2, x1:x2], (y1, y2, x1, x2)]
                                for f in frames]

        for i, m in enumerate(mels):
            idx = 0 if self.args.static else i % len(frames)
            frame_to_save = frames[idx].copy()
            face, coords = face_det_results[idx].copy()

            face = cv2.resize(face, (self.img_size, self.img_size))

            img_batch.append(face)
            mel_batch.append(m)
            frame_batch.append(frame_to_save)
            coords_batch.append(coords)

            if len(img_batch) >= self.args.wav2lip_batch_size:
                img_batch, mel_batch = np.asarray(img_batch), np.asarray(
                    mel_batch)

                img_masked = img_batch.copy()
                img_masked[:, self.img_size // 2:] = 0

                img_batch = np.concatenate(
                    (img_masked, img_batch), axis=3) / 255.
                mel_batch = np.reshape(
                    mel_batch,
                    [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])

                yield img_batch, mel_batch, frame_batch, coords_batch
                img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []

        if len(img_batch) > 0:
            img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)

            img_masked = img_batch.copy()
            img_masked[:, self.img_size // 2:] = 0

            img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
            mel_batch = np.reshape(
                mel_batch,
                [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])

            yield img_batch, mel_batch, frame_batch, coords_batch

    def run(self):
        if not os.path.isfile(self.args.face):
            raise ValueError(
                '--face argument must be a valid path to video/image file')

151 152
        elif path.basename(
                self.args.face).split('.')[1] in ['jpg', 'png', 'jpeg']:
L
lijianshe02 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
            full_frames = [cv2.imread(self.args.face)]
            fps = self.args.fps

        else:
            video_stream = cv2.VideoCapture(self.args.face)
            fps = video_stream.get(cv2.CAP_PROP_FPS)

            print('Reading video frames...')

            full_frames = []
            while 1:
                still_reading, frame = video_stream.read()
                if not still_reading:
                    video_stream.release()
                    break
                if self.args.resize_factor > 1:
                    frame = cv2.resize(
                        frame, (frame.shape[1] // self.args.resize_factor,
                                frame.shape[0] // self.args.resize_factor))

                if self.args.rotate:
                    frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE)

                y1, y2, x1, x2 = self.args.crop
                if x2 == -1: x2 = frame.shape[1]
                if y2 == -1: y2 = frame.shape[0]

                frame = frame[y1:y2, x1:x2]

                full_frames.append(frame)

        print("Number of frames available for inference: " +
              str(len(full_frames)))

        if not self.args.audio.endswith('.wav'):
            print('Extracting raw audio...')
            command = 'ffmpeg -y -i {} -strict -2 {}'.format(
                self.args.audio, 'temp/temp.wav')

            subprocess.call(command, shell=True)
            self.args.audio = 'temp/temp.wav'

        wav = audio.load_wav(self.args.audio, 16000)
        mel = audio.melspectrogram(wav)
        print(mel.shape)

        if np.isnan(mel.reshape(-1)).sum() > 0:
            raise ValueError(
                'Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again'
            )

        mel_chunks = []
        mel_idx_multiplier = 80. / fps
        i = 0
        while 1:
            start_idx = int(i * mel_idx_multiplier)
            if start_idx + mel_step_size > len(mel[0]):
                mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
                break
            mel_chunks.append(mel[:, start_idx:start_idx + mel_step_size])
            i += 1

        print("Length of mel chunks: {}".format(len(mel_chunks)))

        full_frames = full_frames[:len(mel_chunks)]

        batch_size = self.args.wav2lip_batch_size
        gen = self.datagen(full_frames.copy(), mel_chunks)

        model = Wav2Lip()
223 224 225 226 227
        if self.args.checkpoint_path is None:
            model_weights_path = get_weights_path_from_url(WAV2LIP_WEIGHT_URL)
            weights = paddle.load(model_weights_path)
        else:
            weights = paddle.load(self.args.checkpoint_path)
L
lijianshe02 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
        model.load_dict(weights)
        model.eval()
        print("Model loaded")
        for i, (img_batch, mel_batch, frames, coords) in enumerate(
                tqdm(gen,
                     total=int(np.ceil(float(len(mel_chunks)) / batch_size)))):
            if i == 0:

                frame_h, frame_w = full_frames[0].shape[:-1]
                out = cv2.VideoWriter('temp/result.avi',
                                      cv2.VideoWriter_fourcc(*'DIVX'), fps,
                                      (frame_w, frame_h))

            img_batch = paddle.to_tensor(np.transpose(
                img_batch, (0, 3, 1, 2))).astype('float32')
            mel_batch = paddle.to_tensor(np.transpose(
                mel_batch, (0, 3, 1, 2))).astype('float32')

            with paddle.no_grad():
                pred = model(mel_batch, img_batch)

            pred = pred.numpy().transpose(0, 2, 3, 1) * 255.

            for p, f, c in zip(pred, frames, coords):
                y1, y2, x1, x2 = c
                p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))

                f[y1:y2, x1:x2] = p
                out.write(f)

        out.release()

        command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(
            self.args.audio, 'temp/result.avi', self.args.outfile)
        subprocess.call(command, shell=platform.system() != 'Windows')