makeup.py 11.6 KB
Newer Older
L
lijianshe02 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
lijianshe02 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
import paddle
import paddle.nn as nn
import paddle.nn.functional as F

import functools
import numpy as np

from ...modules.norm import build_norm_layer

from .builder import GENERATORS


class PONO(paddle.nn.Layer):
    def __init__(self, eps=1e-5):
        super(PONO, self).__init__()
        self.eps = eps

    def forward(self, x):
        mean = paddle.mean(x, axis=1, keepdim=True)
        var = paddle.mean(paddle.square(x - mean), axis=1, keepdim=True)
        tmp = (x - mean) / paddle.sqrt(var + self.eps)

        return tmp


class ResidualBlock(paddle.nn.Layer):
    """Residual Block with instance normalization."""
    def __init__(self, dim_in, dim_out, mode=None):
        super(ResidualBlock, self).__init__()
        if mode == 't':
            weight_attr = False
            bias_attr = False
        elif mode == 'p' or (mode is None):
            weight_attr = None
            bias_attr = None

        self.main = nn.Sequential(
L
lijianshe02 已提交
52 53 54 55 56 57
            nn.Conv2d(dim_in,
                      dim_out,
                      kernel_size=3,
                      stride=1,
                      padding=1,
                      bias_attr=False),
L
lijianshe02 已提交
58 59 60
            nn.InstanceNorm2d(dim_out,
                              weight_attr=weight_attr,
                              bias_attr=bias_attr), nn.ReLU(),
L
lijianshe02 已提交
61 62 63 64 65 66
            nn.Conv2d(dim_out,
                      dim_out,
                      kernel_size=3,
                      stride=1,
                      padding=1,
                      bias_attr=False),
L
lijianshe02 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80
            nn.InstanceNorm2d(dim_out,
                              weight_attr=weight_attr,
                              bias_attr=bias_attr))

    def forward(self, x):
        """forward"""
        return x + self.main(x)


class StyleResidualBlock(paddle.nn.Layer):
    """Residual Block with instance normalization."""
    def __init__(self, dim_in, dim_out):
        super(StyleResidualBlock, self).__init__()
        self.block1 = nn.Sequential(
L
lijianshe02 已提交
81 82 83 84 85 86
            nn.Conv2d(dim_in,
                      dim_out,
                      kernel_size=3,
                      stride=1,
                      padding=1,
                      bias_attr=False), PONO())
L
lijianshe02 已提交
87 88
        ks = 3
        pw = ks // 2
L
lijianshe02 已提交
89 90
        self.beta1 = nn.Conv2d(dim_in, dim_out, kernel_size=ks, padding=pw)
        self.gamma1 = nn.Conv2d(dim_in, dim_out, kernel_size=ks, padding=pw)
L
lijianshe02 已提交
91 92
        self.block2 = nn.Sequential(
            nn.ReLU(),
L
lijianshe02 已提交
93 94 95 96 97 98 99 100
            nn.Conv2d(dim_out,
                      dim_out,
                      kernel_size=3,
                      stride=1,
                      padding=1,
                      bias_attr=False), PONO())
        self.beta2 = nn.Conv2d(dim_in, dim_out, kernel_size=ks, padding=pw)
        self.gamma2 = nn.Conv2d(dim_in, dim_out, kernel_size=ks, padding=pw)
L
lijianshe02 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

    def forward(self, x, y):
        """forward"""
        x_ = self.block1(x)
        b = self.beta1(y)
        g = self.gamma1(y)
        x_ = (g + 1) * x_ + b
        x_ = self.block2(x_)
        b = self.beta2(y)
        g = self.gamma2(y)
        x_ = (g + 1) * x_ + b
        return x + x_


class MDNet(paddle.nn.Layer):
    """MDNet in PSGAN"""
    def __init__(self, conv_dim=64, repeat_num=3):
        super(MDNet, self).__init__()

        layers = []
        layers.append(
L
lijianshe02 已提交
122 123 124 125 126 127
            nn.Conv2d(3,
                      conv_dim,
                      kernel_size=7,
                      stride=1,
                      padding=3,
                      bias_attr=False))
L
lijianshe02 已提交
128 129 130 131 132 133 134 135 136
        layers.append(
            nn.InstanceNorm2d(conv_dim, weight_attr=None, bias_attr=None))

        layers.append(nn.ReLU())

        # Down-Sampling
        curr_dim = conv_dim
        for i in range(2):
            layers.append(
L
lijianshe02 已提交
137 138 139 140 141 142
                nn.Conv2d(curr_dim,
                          curr_dim * 2,
                          kernel_size=4,
                          stride=2,
                          padding=1,
                          bias_attr=False))
L
lijianshe02 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
            layers.append(
                nn.InstanceNorm2d(curr_dim * 2,
                                  weight_attr=None,
                                  bias_attr=None))
            layers.append(nn.ReLU())
            curr_dim = curr_dim * 2

        # Bottleneck
        for i in range(repeat_num):
            layers.append(ResidualBlock(dim_in=curr_dim, dim_out=curr_dim))

        self.main = nn.Sequential(*layers)

    def forward(self, x):
        """forward"""
        out = self.main(x)
        return out


class TNetDown(paddle.nn.Layer):
    """MDNet in PSGAN"""
    def __init__(self, conv_dim=64, repeat_num=3):
        super(TNetDown, self).__init__()

        layers = []
        layers.append(
L
lijianshe02 已提交
169 170 171 172 173 174
            nn.Conv2d(3,
                      conv_dim,
                      kernel_size=7,
                      stride=1,
                      padding=3,
                      bias_attr=False))
L
lijianshe02 已提交
175 176 177 178 179 180 181 182 183
        layers.append(
            nn.InstanceNorm2d(conv_dim, weight_attr=False, bias_attr=False))

        layers.append(nn.ReLU())

        # Down-Sampling
        curr_dim = conv_dim
        for i in range(2):
            layers.append(
L
lijianshe02 已提交
184 185 186 187 188 189
                nn.Conv2d(curr_dim,
                          curr_dim * 2,
                          kernel_size=4,
                          stride=2,
                          padding=1,
                          bias_attr=False))
L
lijianshe02 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
            layers.append(
                nn.InstanceNorm2d(curr_dim * 2,
                                  weight_attr=False,
                                  bias_attr=False))
            layers.append(nn.ReLU())
            curr_dim = curr_dim * 2

        # Bottleneck
        for i in range(repeat_num):
            layers.append(
                ResidualBlock(dim_in=curr_dim, dim_out=curr_dim, mode='t'))

        self.main = nn.Sequential(*layers)

    def forward(self, x):
        """forward"""
        out = self.main(x)
        return out


class GetMatrix(paddle.fluid.dygraph.Layer):
    def __init__(self, dim_in, dim_out):
        super(GetMatrix, self).__init__()
L
lijianshe02 已提交
213 214 215 216 217 218 219 220 221 222 223 224
        self.get_gamma = nn.Conv2d(dim_in,
                                   dim_out,
                                   kernel_size=1,
                                   stride=1,
                                   padding=0,
                                   bias_attr=False)
        self.get_beta = nn.Conv2d(dim_in,
                                  dim_out,
                                  kernel_size=1,
                                  stride=1,
                                  padding=0,
                                  bias_attr=False)
L
lijianshe02 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238

    def forward(self, x):
        gamma = self.get_gamma(x)
        beta = self.get_beta(x)
        return gamma, beta


class MANet(paddle.nn.Layer):
    """MANet in PSGAN"""
    def __init__(self, conv_dim=64, repeat_num=3, w=0.01):
        super(MANet, self).__init__()
        self.encoder = TNetDown(conv_dim=conv_dim, repeat_num=repeat_num)
        curr_dim = conv_dim * 4
        self.w = w
L
lijianshe02 已提交
239 240
        self.beta = nn.Conv2d(curr_dim, curr_dim, kernel_size=3, padding=1)
        self.gamma = nn.Conv2d(curr_dim, curr_dim, kernel_size=3, padding=1)
L
lijianshe02 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
        self.simple_spade = GetMatrix(curr_dim, 1)  # get the makeup matrix
        self.repeat_num = repeat_num
        for i in range(repeat_num):
            setattr(self, "bottlenecks_" + str(i),
                    ResidualBlock(dim_in=curr_dim, dim_out=curr_dim, mode='t'))
        # Up-Sampling
        self.upsamplers = []
        self.up_betas = []
        self.up_gammas = []
        self.up_acts = []
        y_dim = curr_dim
        for i in range(2):
            layers = []
            layers.append(
                nn.ConvTranspose2d(curr_dim,
                                   curr_dim // 2,
                                   kernel_size=4,
                                   stride=2,
                                   padding=1,
                                   bias_attr=False))
            layers.append(
                nn.InstanceNorm2d(curr_dim // 2,
                                  weight_attr=False,
                                  bias_attr=False))

            setattr(self, "up_acts_" + str(i), nn.ReLU())
            setattr(
                self, "up_betas_" + str(i),
                nn.ConvTranspose2d(y_dim,
                                   curr_dim // 2,
                                   kernel_size=4,
                                   stride=2,
                                   padding=1))
            setattr(
                self, "up_gammas_" + str(i),
                nn.ConvTranspose2d(y_dim,
                                   curr_dim // 2,
                                   kernel_size=4,
                                   stride=2,
                                   padding=1))
            setattr(self, "up_samplers_" + str(i), nn.Sequential(*layers))
            curr_dim = curr_dim // 2
        self.img_reg = [
L
lijianshe02 已提交
284 285 286 287 288 289
            nn.Conv2d(curr_dim,
                      3,
                      kernel_size=7,
                      stride=1,
                      padding=3,
                      bias_attr=False)
L
lijianshe02 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
        ]
        self.img_reg = nn.Sequential(*self.img_reg)

    def forward(self, x, y, x_p, y_p, consistency_mask, mask_x, mask_y):
        """forward"""
        # y -> ref feature
        # x -> src img
        x = self.encoder(x)
        _, c, h, w = x.shape
        x_flat = x.reshape([-1, c, h * w])
        x_flat = self.w * x_flat
        if x_p is not None:
            x_flat = paddle.concat([x_flat, x_p], axis=1)

        _, c2, h2, w2 = y.shape
        y_flat = y.reshape([-1, c2, h2 * w2])
        y_flat = self.w * y_flat
        if y_p is not None:
            y_flat = paddle.concat([y_flat, y_p], axis=1)
        a_ = paddle.matmul(x_flat, y_flat, transpose_x=True) * 200.0

        # mask softmax
        if consistency_mask is not None:
            a_ = a_ - 100.0 * (1 - consistency_mask)
        a = F.softmax(a_, axis=-1)

        gamma, beta = self.simple_spade(y)

        beta = beta.reshape([-1, h2 * w2, 1])
        beta = paddle.matmul(a, beta)
        beta = beta.reshape([-1, 1, h2, w2])
        gamma = gamma.reshape([-1, h2 * w2, 1])
        gamma = paddle.matmul(a, gamma)
        gamma = gamma.reshape([-1, 1, h2, w2])
        x = x * (1 + gamma) + beta

        for i in range(self.repeat_num):
            layer = getattr(self, "bottlenecks_" + str(i))
            x = layer(x)

        for idx in range(2):
            layer = getattr(self, "up_samplers_" + str(idx))
            x = layer(x)
            layer = getattr(self, "up_acts_" + str(idx))
            x = layer(x)
        x = self.img_reg(x)
        x = paddle.tanh(x)
        return x, a


@GENERATORS.register()
class GeneratorPSGANAttention(paddle.nn.Layer):
    def __init__(self, conv_dim=64, repeat_num=3):
        super(GeneratorPSGANAttention, self).__init__()
        self.ma_net = MANet(conv_dim=conv_dim, repeat_num=repeat_num)
        self.md_net = MDNet(conv_dim=conv_dim, repeat_num=repeat_num)

    def forward(self, x, y, x_p, y_p, consistency_mask, mask_x, mask_y):
        """forward"""
        y = self.md_net(y)
        out, a = self.ma_net(x, y, x_p, y_p, consistency_mask, mask_x, mask_y)
        return out, a