from paddle_fl.core.trainer.fl_trainer import FLTrainerFactory from paddle_fl.core.master.fl_job import FLRunTimeJob import numpy as np import sys import logging import time logging.basicConfig(filename="test.log", filemode="w", format="%(asctime)s %(name)s:%(levelname)s:%(message)s", datefmt="%d-%M-%Y %H:%M:%S", level=logging.DEBUG) def reader(): for i in range(1000): data_dict = {} for i in range(3): data_dict[str(i)] = np.random.rand(1, 5).astype('float32') data_dict["label"] = np.random.randint(2, size=(1, 1)).astype('int64') yield data_dict trainer_id = int(sys.argv[1]) # trainer id for each guest job_path = "fl_job_config" job = FLRunTimeJob() job.load_trainer_job(job_path, trainer_id) job._scheduler_ep = "127.0.0.1:9091" # Inform the scheduler IP to trainer trainer = FLTrainerFactory().create_fl_trainer(job) trainer._current_ep = "127.0.0.1:{}".format(9000+trainer_id) trainer.start() print(trainer._scheduler_ep, trainer._current_ep) output_folder = "fl_model" epoch_id = 0 while not trainer.stop(): print("batch %d start train" % (epoch_id)) train_step = 0 for data in reader(): trainer.run(feed=data, fetch=[]) train_step += 1 if train_step == trainer._step: break epoch_id += 1 if epoch_id % 5 == 0: trainer.save_inference_program(output_folder)