import paddle.fluid as fluid import paddle_fl as fl from paddle_fl.core.master.job_generator import JobGenerator from paddle_fl.core.strategy.fl_strategy_base import FLStrategyFactory import math class Model(object): def __init__(self): pass def lr_network(self): self.inputs = fluid.layers.data(name='img', shape=[1, 28, 28], dtype="float32") self.label = fluid.layers.data(name='label', shape=[1],dtype='int64') self.predict = fluid.layers.fc(input=self.inputs, size=10, act='softmax') self.sum_cost = fluid.layers.cross_entropy(input=self.predict, label=self.label) self.accuracy = fluid.layers.accuracy(input=self.predict, label=self.label) self.loss = fluid.layers.mean(self.sum_cost) self.startup_program = fluid.default_startup_program() model = Model() model.lr_network() STEP_EPSILON = 0.1 DELTA = 0.00001 SIGMA = math.sqrt(2.0 * math.log(1.25/DELTA)) / STEP_EPSILON CLIP = 4.0 batch_size = 64 job_generator = JobGenerator() optimizer = fluid.optimizer.SGD(learning_rate=0.1) job_generator.set_optimizer(optimizer) job_generator.set_losses([model.loss]) job_generator.set_startup_program(model.startup_program) job_generator.set_infer_feed_and_target_names( [model.inputs.name, model.label.name], [model.loss.name, model.accuracy.name]) build_strategy = FLStrategyFactory() build_strategy.dpsgd = True build_strategy.inner_step = 1 strategy = build_strategy.create_fl_strategy() strategy.learning_rate = 0.1 strategy.clip = CLIP strategy.batch_size = float(batch_size) strategy.sigma = CLIP * SIGMA # endpoints will be collected through the cluster # in this example, we suppose endpoints have been collected endpoints = ["127.0.0.1:8181"] output = "fl_job_config" job_generator.generate_fl_job( strategy, server_endpoints=endpoints, worker_num=4, output=output) # fl_job_config will be dispatched to workers