# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid import paddle_fl as fl from paddle_fl.core.master.job_generator import JobGenerator from paddle_fl.core.strategy.fl_strategy_base import FLStrategyFactory class Model(object): def __init__(self): pass def linear_regression(self, inputs, label): param_attrs = fluid.ParamAttr( name="fc_0.b_0", initializer=fluid.initializer.ConstantInitializer(0.0)) param_attrs = fluid.ParamAttr( name="fc_0.w_0", initializer=fluid.initializer.ConstantInitializer(0.0)) self.predict = fluid.layers.fc(input=inputs, size=10, act='softmax', param_attr=param_attrs) self.sum_cost = fluid.layers.cross_entropy( input=self.predict, label=label) self.loss = fluid.layers.mean(self.sum_cost) self.accuracy = fluid.layers.accuracy(input=self.predict, label=label) self.startup_program = fluid.default_startup_program() inputs = fluid.layers.data(name='x', shape=[1, 28, 28], dtype='float32') label = fluid.layers.data(name='y', shape=[1], dtype='int64') model = Model() model.linear_regression(inputs, label) job_generator = JobGenerator() optimizer = fluid.optimizer.SGD(learning_rate=0.01) job_generator.set_optimizer(optimizer) job_generator.set_losses([model.loss]) job_generator.set_startup_program(model.startup_program) job_generator.set_infer_feed_and_target_names([inputs.name, label.name], [model.loss.name]) build_strategy = FLStrategyFactory() #build_strategy.fed_avg = True build_strategy.sec_agg = True param_name_list = [] param_name_list.append( "fc_0.w_0.opti.trainer_") # need trainer_id when running param_name_list.append("fc_0.b_0.opti.trainer_") build_strategy.param_name_list = param_name_list build_strategy.inner_step = 10 strategy = build_strategy.create_fl_strategy() # endpoints will be collected through the cluster # in this example, we suppose endpoints have been collected endpoints = ["127.0.0.1:8181"] output = "fl_job_config" job_generator.generate_fl_job( strategy, server_endpoints=endpoints, worker_num=2, output=output) # fl_job_config will be dispatched to workers