# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import paddle.fluid.core as core from paddle.fluid.op import Operator def create_op(scope, op_type, inputs, outputs, attrs, cache_list=None): kwargs = dict() op_maker = core.op_proto_and_checker_maker op_role_attr_name = op_maker.kOpRoleAttrName() if op_role_attr_name not in attrs: attrs[op_role_attr_name] = int(op_maker.OpRole.Forward) def __create_var__(name, var_name): scope.var(var_name).get_tensor() kwargs[name].append(var_name) for in_name, in_dup in Operator.get_op_inputs(op_type): if in_name in inputs: kwargs[in_name] = [] if in_dup: sub_in = inputs[in_name] for item in sub_in: sub_in_name, _ = item[0], item[1] __create_var__(in_name, sub_in_name) else: __create_var__(in_name, in_name) if cache_list != None and isinstance(cache_list, list): for name in cache_list: kwargs[name] = [] scope.var(name) kwargs[name].append(name) for out_name, out_dup in Operator.get_op_outputs(op_type): if out_name in outputs: kwargs[out_name] = [] if out_dup: sub_out = outputs[out_name] for item in sub_out: sub_out_name, _ = item[0], item[1] __create_var__(out_name, sub_out_name) else: __create_var__(out_name, out_name) for attr_name in Operator.get_op_attr_names(op_type): if attr_name in attrs: kwargs[attr_name] = attrs[attr_name] return Operator(op_type, **kwargs) def set_input(scope, op, inputs, place): def __set_input__(var_name, var): if isinstance(var, tuple) or isinstance(var, np.ndarray): tensor = scope.find_var(var_name).get_tensor() if isinstance(var, tuple): tensor.set_recursive_sequence_lengths(var[1]) var = var[0] tensor._set_dims(var.shape) tensor.set(var, place) elif isinstance(var, float): scope.find_var(var_name).set_float(var) elif isinstance(var, int): scope.find_var(var_name).set_int(var) for in_name, in_dup in Operator.get_op_inputs(op.type()): if in_name in inputs: if in_dup: sub_in = inputs[in_name] for item in sub_in: sub_in_name, sub_in_val = item[0], item[1] __set_input__(sub_in_name, sub_in_val) else: __set_input__(in_name, inputs[in_name]) def append_input_output(block, op_proto, np_list, is_input, dtype): '''Insert VarDesc and generate Python variable instance''' proto_list = op_proto.inputs if is_input else op_proto.outputs def create_var(block, name, np_list, var_proto): dtype = None shape = None lod_level = None if name not in np_list: assert var_proto.intermediate, "{} not found".format(name) else: # inferece the dtype from numpy value. np_value = np_list[name] if isinstance(np_value, tuple): dtype = np_value[0].dtype # output shape, lod should be infered from input. if is_input: shape = list(np_value[0].shape) lod_level = len(np_value[1]) else: dtype = np_value.dtype if is_input: shape = list(np_value.shape) lod_level = 0 return block.create_var( dtype=dtype, shape=shape, lod_level=lod_level, name=name) var_dict = {} for var_proto in proto_list: var_name = str(var_proto.name) if (var_name not in np_list) and var_proto.dispensable: continue if is_input: assert (var_name in np_list) or (var_proto.dispensable), \ "Missing {} as input".format(var_name) if var_proto.duplicable: assert isinstance(np_list[var_name], list), \ "Duplicable {} should be set as list".format(var_name) var_list = [] for (name, np_value) in np_list[var_name]: var_list.append( create_var(block, name, {name: np_value}, var_proto)) var_dict[var_name] = var_list else: var_dict[var_name] = create_var(block, var_name, np_list, var_proto) return var_dict def append_loss_ops(block, output_names): mean_inputs = list(map(block.var, output_names)) if len(mean_inputs) == 1: loss = block.create_var(dtype=mean_inputs[0].dtype, shape=[2, 1]) op = block.append_op( inputs={"X": mean_inputs}, outputs={"Out": loss}, type='mpc_mean') op.desc.infer_var_type(block.desc) op.desc.infer_shape(block.desc) else: avg_sum = [] for cur_loss in mean_inputs: cur_avg_loss = block.create_var(dtype=cur_loss.dtype, shape=[2, 1]) op = block.append_op( inputs={"X": [cur_loss]}, outputs={"Out": [cur_avg_loss]}, type="mpc_mean") op.desc.infer_var_type(block.desc) op.desc.infer_shape(block.desc) avg_sum.append(cur_avg_loss) loss_sum = block.create_var(dtype=avg_sum[0].dtype, shape=[2, 1]) op_sum = block.append_op( inputs={"X": avg_sum}, outputs={"Out": loss_sum}, type='mpc_sum') op_sum.desc.infer_var_type(block.desc) op_sum.desc.infer_shape(block.desc) loss = block.create_var(dtype=loss_sum.dtype, shape=[2, 1]) op_loss = block.append_op( inputs={"X": loss_sum}, outputs={"Out": loss}, type='mpc_scale', attrs={'scale': 1.0 / float(len(avg_sum))}) op_loss.desc.infer_var_type(block.desc) op_loss.desc.infer_shape(block.desc) return loss