# coding=utf-8 # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MNIST Demo """ import sys sys.path.append('../') import env_set import numpy as np import time import paddle import paddle.fluid as fluid import paddle_fl.mpc as pfl_mpc import paddle_fl.mpc.data_utils.aby3 as aby3 import prepare_data role, server, port = env_set.TestOptions().values() # modify host(localhost). pfl_mpc.init("aby3", int(role), "localhost", server, int(port)) role = int(role) # data preprocessing BATCH_SIZE = 128 epoch_num = 2 # network x = pfl_mpc.data(name='x', shape=[BATCH_SIZE, 784], dtype='int64') y = pfl_mpc.data(name='y', shape=[BATCH_SIZE, 1], dtype='int64') y_pre = pfl_mpc.layers.fc(input=x, size=1) cost = pfl_mpc.layers.sigmoid_cross_entropy_with_logits(y_pre, y) infer_program = fluid.default_main_program().clone(for_test=False) avg_loss = pfl_mpc.layers.mean(cost) optimizer = pfl_mpc.optimizer.SGD(learning_rate=0.001) optimizer.minimize(avg_loss) # train_reader feature_reader = aby3.load_aby3_shares("/tmp/mnist2_feature", id=role, shape=(784,)) label_reader = aby3.load_aby3_shares("/tmp/mnist2_label", id=role, shape=(1,)) batch_feature = aby3.batch(feature_reader, BATCH_SIZE, drop_last=True) batch_label = aby3.batch(label_reader, BATCH_SIZE, drop_last=True) # test_reader test_feature_reader = aby3.load_aby3_shares("/tmp/mnist2_test_feature", id=role, shape=(784,)) test_label_reader = aby3.load_aby3_shares("/tmp/mnist2_test_label", id=role, shape=(1,)) test_batch_feature = aby3.batch(test_feature_reader, BATCH_SIZE, drop_last=True) test_batch_label = aby3.batch(test_label_reader, BATCH_SIZE, drop_last=True) place = fluid.CPUPlace() # async data loader loader = fluid.io.DataLoader.from_generator(feed_list=[x, y], capacity=BATCH_SIZE) batch_sample = paddle.reader.compose(batch_feature, batch_label) loader.set_batch_generator(batch_sample, places=place) test_loader = fluid.io.DataLoader.from_generator(feed_list=[x, y], capacity=BATCH_SIZE) test_batch_sample = paddle.reader.compose(test_batch_feature, test_batch_label) test_loader.set_batch_generator(test_batch_sample, places=place) # loss file loss_file = "/tmp/mnist_output_loss.part{}".format(role) # train exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) start_time = time.time() step = 0 for epoch_id in range(epoch_num): # feed data via loader for sample in loader(): loss = exe.run(feed=sample, fetch_list=[cost.name]) if step % 50 == 0: print('Epoch={}, Step={}, loss={}'.format(epoch_id, step, loss)) step += 1 end_time = time.time() print('Mpc Training of Epoch={} Batch_size={}, cost time in seconds:{}' .format(epoch_num, BATCH_SIZE, (end_time - start_time))) # prediction prediction_file = "/tmp/mnist_output_prediction.part{}".format(role) for sample in test_loader(): prediction = exe.run(program=infer_program, feed=sample, fetch_list=[cost]) with open(prediction_file, 'ab') as f: f.write(np.array(prediction).tostring()) # decrypt #if 0 == role: # prepare_data.decrypt_data_to_file("/tmp/mnist_output_prediction", (BATCH_SIZE,), "mpc_label")