# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This module test conv op. """ import unittest from multiprocessing import Manager import numpy as np import test_op_base from op_test import OpTest import paddle_fl.mpc.data_utils.aby3 as aby3 import paddle.fluid as fluid import paddle.fluid.core as core def conv2d_forward_naive(input, filter, group, conv_param, padding_algorithm='EXPLICIT', data_format='NCHW'): if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]: raise ValueError("Unknown Attr(padding_algorithm): '%s'. " "It can only be 'SAME' or 'VALID'." % str(padding_algorithm)) if data_format not in ["NCHW", "NHWC"]: raise ValueError("Unknown Attr(data_format): '%s' ." "It can only be 'NCHW' or 'NHWC'." % str(data_format)) channel_last = (data_format == "NHWC") if channel_last: input = np.transpose(input, [0, 3, 1, 2]) in_n, in_c, in_h, in_w = input.shape f_n, f_c, f_h, f_w = filter.shape out_n = in_n out_c = f_n assert f_c * group == in_c assert np.mod(out_c, group) == 0 sub_out_c = out_c // group sub_f_n = f_n // group stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[ 'dilation'] # update pad and dilation def _get_padding_with_SAME(input_shape, pool_size, pool_stride): padding = [] for input_size, filter_size, stride_size in zip(input_shape, pool_size, pool_stride): out_size = int((input_size + stride_size - 1) / stride_size) pad_sum = np.max(( (out_size - 1) * stride_size + filter_size - input_size, 0)) pad_0 = int(pad_sum / 2) pad_1 = int(pad_sum - pad_0) padding.append(pad_0) padding.append(pad_1) return padding ksize = filter.shape[2:4] if padding_algorithm == "VALID": pad = [0, 0, 0, 0] elif padding_algorithm == "SAME": dilation = [1, 1] input_data_shape = input.shape[2:4] pad = _get_padding_with_SAME(input_data_shape, ksize, stride) pad_h_0, pad_h_1 = pad[0], pad[0] pad_w_0, pad_w_1 = pad[1], pad[1] if len(pad) == 4: pad_h_0, pad_h_1 = pad[0], pad[1] pad_w_0, pad_w_1 = pad[2], pad[3] out_h = 1 + (in_h + pad_h_0 + pad_h_1 - (dilation[0] * (f_h - 1) + 1)) // stride[0] out_w = 1 + (in_w + pad_w_0 + pad_w_1 - (dilation[1] * (f_w - 1) + 1)) // stride[1] out = np.zeros((out_n, out_c, out_h, out_w)) d_bolck_h = (dilation[0] * (f_h - 1) + 1) d_bolck_w = (dilation[1] * (f_w - 1) + 1) input_pad = np.pad(input, ((0, 0), (0, 0), (pad_h_0, pad_h_1), (pad_w_0, pad_w_1)), mode='constant', constant_values=0) filter_dilation = np.zeros((f_n, f_c, d_bolck_h, d_bolck_w)) filter_dilation[:, :, 0:d_bolck_h:dilation[0], 0:d_bolck_w:dilation[ 1]] = filter for i in range(out_h): for j in range(out_w): for g in range(group): input_pad_masked = \ input_pad[:, g * f_c:(g + 1) * f_c, i * stride[0]:i * stride[0] + d_bolck_h, j * stride[1]:j * stride[1] + d_bolck_w] f_sub = filter_dilation[g * sub_f_n:(g + 1) * sub_f_n, :, :, :] # sub_f_n == sub_out_c for k in range(sub_out_c): # Multiplication of Corresponding Elements, then sum all out[:, g * sub_out_c + k, i, j] = \ np.sum(input_pad_masked * f_sub[k, :, :, :], axis=(1, 2, 3)) if channel_last: out = np.transpose(out, [0, 2, 3, 1]) return out, in_n, out_h, out_w, out_c def create_test_channel_last_class(parent): class TestChannelLastCase(parent): def init_data_format(self): self.data_format = "NHWC" def init_test_case_2(self): N, C, H, W = self.input_size self.input_size = [N, H, W, C] cls_name = "{0}_{1}".format(parent.__name__, "ChannelLast") TestChannelLastCase.__name__ = cls_name globals()[cls_name] = TestChannelLastCase def create_test_padding_SAME_class(parent): class TestPaddingSMAECase(parent): def init_paddings(self): self.pad = [0, 0] self.padding_algorithm = "SAME" cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp") TestPaddingSMAECase.__name__ = cls_name globals()[cls_name] = TestPaddingSMAECase def create_test_padding_VALID_class(parent): class TestPaddingVALIDCase(parent): def init_paddings(self): self.pad = [1, 1] self.padding_algorithm = "VALID" def test_check_grad(self): error = 0.09 if parent.__name__ in ["TestConv2dOp_AsyPadding", "TestWithStride_AsyPadding"]: error = 0.14 elif parent.__name__ in ["TestWithInput1x1Filter1x1_AsyPadding"]: error = 0.66 place = core.CPUPlace() self.check_grad_with_place( place, {'Input', 'Filter'}, 'Output', max_relative_error=error) cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp") TestPaddingVALIDCase.__name__ = cls_name globals()[cls_name] = TestPaddingVALIDCase class TestConv2dOp(OpTest): def setUp(self): OpTest.setUp(self) self.op_type = "mpc_conv2d" self.data_format = "AnyLayout" self.dtype = np.int64 self.init_kernel_type() self.init_group() self.init_dilation() self.init_test_case() conv2d_param = { 'stride': self.stride, 'pad': self.pad, 'dilation': self.dilations } share = lambda x: np.array([x * 65536/3] * 2).astype('int64') input = np.random.random(self.input_size) filter = np.random.uniform(-1, 1, self.filter_size) output, _, _, _, _ = conv2d_forward_naive(input, filter, self.groups, conv2d_param) input = share(input) filter = share(filter) self.inputs = { 'Input': OpTest.np_dtype_to_fluid_dtype(input), 'Filter': OpTest.np_dtype_to_fluid_dtype(filter) } self.attrs = { 'strides': self.stride, 'paddings': self.pad, 'groups': self.groups, 'dilations': self.dilations, 'data_format': self.data_format, } self.outputs = {'Output': output} def test_check_output(self): place = core.CPUPlace() self.check_output_with_place( place, atol=1e-3) def test_check_grad(self): place = core.CPUPlace() self.check_grad_with_place( place, {'Input', 'Filter'}, 'Output', max_relative_error=0.07) def test_check_grad_no_filter(self): place = core.CPUPlace() self.check_grad_with_place( place, ['Input'], 'Output', max_relative_error=0.07, no_grad_set=set(['Filter'])) def test_check_grad_no_input(self): place = core.CPUPlace() self.check_grad_with_place( place, ['Filter'], 'Output', max_relative_error=0.06, no_grad_set=set(['Input'])) def init_test_case(self): self.pad = [0, 0] self.stride = [1, 1] self.input_size = [2, 3, 5, 5] # NCHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [6, f_c, 3, 3] def init_test_case_2(self): pass def init_dilation(self): self.dilations = [1, 1] def init_group(self): self.groups = 1 def init_kernel_type(self): pass class TestWithPad(TestConv2dOp): def init_test_case(self): self.pad = [1, 1] self.stride = [1, 1] self.input_size = [2, 3, 5, 5] # NCHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [6, f_c, 3, 3] class TestWithStride(TestConv2dOp): def init_test_case(self): self.pad = [1, 1] self.stride = [2, 2] self.input_size = [2, 3, 6, 6] # NCHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [6, f_c, 3, 3] class TestWithGroup(TestConv2dOp): def init_test_case(self): self.pad = [0, 0] self.stride = [1, 1] self.input_size = [2, 3, 5, 5] # NCHW self.group = 3 assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [18, f_c, 3, 3] class TestWith1x1(TestConv2dOp): def init_test_case(self): self.pad = [0, 0] self.stride = [1, 1] self.input_size = [2, 3, 5, 5] # NCHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [120, f_c, 1, 1] def init_group(self): self.groups = 3 def test_check_grad(self): place = core.CPUPlace() self.check_grad_with_place( place, {'Input', 'Filter'}, 'Output', max_relative_error=0.6) def test_check_grad_no_filter(self): place = core.CPUPlace() self.check_grad_with_place( place, ['Input'], 'Output', max_relative_error=0.9, no_grad_set=set(['Filter'])) class TestWithDilation(TestConv2dOp): def init_test_case(self): self.pad = [0, 0] self.stride = [1, 1] self.input_size = [2, 3, 10, 10] # NCHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [12, f_c, 3, 3] def init_dilation(self): self.dilations = [2, 2] def init_group(self): self.groups = 3 class TestWithInput1x1Filter1x1(TestConv2dOp): def init_test_case(self): self.pad = [0, 0] self.stride = [1, 1] self.input_size = [100, 3, 1, 1] # NCHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [120, f_c, 1, 1] def init_group(self): self.groups = 3 def test_check_grad(self): place = core.CPUPlace() self.check_grad_with_place( place, {'Input', 'Filter'}, 'Output', max_relative_error=0.75) class TestConv2dOp_v2(OpTest): def setUp(self): self.op_type = "mpc_conv2d" self.dtype = np.int64 self.init_kernel_type() self.init_group() self.init_dilation() self.init_data_format() self.init_test_case() self.init_paddings() self.init_test_case_2() conv2d_param = { 'stride': self.stride, 'pad': self.pad, 'dilation': self.dilations } share = lambda x: np.array([x * 65536/3] * 2).astype('int64') input = np.random.random(self.input_size) filter = np.random.uniform(-1, 1, self.filter_size) output, _, _, _, _ = conv2d_forward_naive(input, filter, self.groups, conv2d_param, self.padding_algorithm, self.data_format) input = share(input) filter = share(filter) self.inputs = { 'Input': OpTest.np_dtype_to_fluid_dtype(input), 'Filter': OpTest.np_dtype_to_fluid_dtype(filter) } self.attrs = { 'strides': self.stride, 'paddings': self.pad, 'padding_algorithm': self.padding_algorithm, 'groups': self.groups, 'dilations': self.dilations, 'data_format': self.data_format } self.outputs = {'Output': output} def test_check_output(self): place = core.CPUPlace() self.check_output_with_place( place, atol=1e-3) def test_check_grad(self): place = core.CPUPlace() self.check_grad_with_place( place, {'Input', 'Filter'}, 'Output', max_relative_error=0.14) def test_check_grad_no_filter(self): place = core.CPUPlace() self.check_grad_with_place( place, ['Input'], 'Output', max_relative_error=0.13, no_grad_set=set(['Filter'])) def test_check_grad_no_input(self): place = core.CPUPlace() self.check_grad_with_place( place, ['Filter'], 'Output', max_relative_error=0.7, no_grad_set=set(['Input'])) def init_test_case(self): self.pad = [0, 0] self.stride = [1, 2] self.input_size = [2, 3, 5, 5] # NCHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [6, f_c, 4, 3] def init_dilation(self): self.dilations = [1, 1] def init_group(self): self.groups = 1 def init_kernel_type(self): pass def init_paddings(self): self.pad = [0, 0] self.padding_algorithm = "EXPLICIT" def init_data_format(self): self.data_format = "NCHW" def init_test_case_2(self): pass class TestConv2dOp_AsyPadding(TestConv2dOp_v2): def init_paddings(self): self.pad = [0, 0, 1, 2] self.padding_algorithm = "EXPLICIT" def test_check_grad(self): place = core.CPUPlace() self.check_grad_with_place( place, {'Input', 'Filter'}, 'Output', max_relative_error=0.09) class TestWithPad_AsyPadding(TestConv2dOp_v2): def init_test_case(self): self.stride = [1, 1] self.input_size = [2, 3, 5, 5] # NCHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [6, f_c, 3, 3] def init_paddings(self): self.pad = [2, 1, 3, 2] self.padding_algorithm = "EXPLICIT" class TestWithStride_AsyPadding(TestConv2dOp_v2): def init_test_case(self): self.stride = [2, 2] self.input_size = [2, 3, 6, 6] # NCHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [6, f_c, 3, 3] def init_paddings(self): self.pad = [2, 1, 3, 2] self.padding_algorithm = "EXPLICIT" class TestWithGroup_AsyPadding(TestConv2dOp_v2): def init_test_case(self): self.pad = [0, 0] self.stride = [1, 2] self.input_size = [2, 3, 5, 5] # NCHW self.group = 3 assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [24, f_c, 4, 3] class TestWith1x1_AsyPadding(TestConv2dOp_v2): def init_test_case(self): self.stride = [1, 1] self.input_size = [2, 3, 5, 5] # NCHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [120, f_c, 1, 1] def init_group(self): self.groups = 3 def init_paddings(self): self.pad = [2, 2, 4, 0] self.padding_algorithm = "EXPLICIT" class TestWithDepthWise3x3_AsyPadding(TestConv2dOp_v2): def init_test_case(self): self.stride = [1, 1] self.input_size = [3, 4, 10, 10] # NCHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [16, f_c, 3, 3] def init_dilation(self): self.dilations = [2, 2] def init_group(self): self.groups = 4 def init_paddings(self): self.pad = [1, 3, 2, 1] self.padding_algorithm = "EXPLICIT" class TestWithDepthWise5x5_AsyPadding(TestConv2dOp_v2): def init_test_case(self): self.stride = [1, 1] self.input_size = [2, 4, 10, 10] # NCHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [8, f_c, 5, 5] def init_group(self): self.groups = 4 def init_paddings(self): self.pad = [0, 1, 1, 0] self.padding_algorithm = "EXPLICIT" class TestWithDepthWise7x7_AsyPadding(TestConv2dOp_v2): def init_test_case(self): self.stride = [2, 2] self.input_size = [2, 8, 10, 10] # NCHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [16, f_c, 7, 7] def init_group(self): self.groups = 8 def init_paddings(self): self.pad = [1, 3, 4, 1] self.padding_algorithm = "EXPLICIT" class TestWithDilation_AsyPadding(TestConv2dOp_v2): def init_test_case(self): self.stride = [1, 1] self.input_size = [2, 3, 10, 10] # NCHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [24, f_c, 3, 3] def init_dilation(self): self.dilations = [2, 2] def init_group(self): self.groups = 3 def init_paddings(self): self.pad = [0, 1, 3, 0] self.padding_algorithm = "EXPLICIT" class TestWithInput1x1Filter1x1_AsyPadding(TestConv2dOp_v2): def init_test_case(self): self.stride = [1, 1] self.input_size = [40, 3, 1, 1] # NCHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [120, f_c, 1, 1] def init_group(self): self.groups = 3 def init_paddings(self): self.pad = [0, 3, 4, 0] self.padding_algorithm = "EXPLICIT" def test_check_grad(self): place = core.CPUPlace() self.check_grad_with_place( place, {'Input', 'Filter'}, 'Output', max_relative_error=0.7) def test_check_grad_no_filter(self): place = core.CPUPlace() self.check_grad_with_place( place, ['Input'], 'Output', max_relative_error=0.7, no_grad_set=set(['Filter'])) #---------- test SAME VALID ----------- create_test_padding_SAME_class(TestConv2dOp_AsyPadding) create_test_padding_SAME_class(TestWithPad_AsyPadding) create_test_padding_SAME_class(TestWithStride_AsyPadding) create_test_padding_SAME_class(TestWithGroup_AsyPadding) create_test_padding_SAME_class(TestWithInput1x1Filter1x1_AsyPadding) create_test_padding_VALID_class(TestConv2dOp_AsyPadding) create_test_padding_VALID_class(TestWithPad_AsyPadding) create_test_padding_VALID_class(TestWithStride_AsyPadding) create_test_padding_VALID_class(TestWithGroup_AsyPadding) create_test_padding_VALID_class(TestWithInput1x1Filter1x1_AsyPadding) # ------------ test channel last --------- create_test_channel_last_class(TestConv2dOp_AsyPadding) create_test_channel_last_class(TestWithPad_AsyPadding) create_test_channel_last_class(TestWithGroup_AsyPadding) create_test_channel_last_class(TestWith1x1_AsyPadding) create_test_channel_last_class(TestWithInput1x1Filter1x1_AsyPadding) if __name__ == '__main__': unittest.main()