# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import numpy as np import time import paddle import paddle.fluid as fluid import paddle_fl.mpc as pfl_mpc import paddle_fl.mpc.data_utils.aby3 as aby3 role, server, port = sys.argv[1], sys.argv[2], sys.argv[3] pfl_mpc.init("aby3", int(role), "localhost", server, int(port)) role = int(role) # data preprocessing BATCH_SIZE = 10 feature_reader = aby3.load_aby3_shares( "/tmp/house_feature", id=role, shape=(13, )) label_reader = aby3.load_aby3_shares("/tmp/house_label", id=role, shape=(1, )) batch_feature = aby3.batch(feature_reader, BATCH_SIZE, drop_last=True) batch_label = aby3.batch(label_reader, BATCH_SIZE, drop_last=True) x = pfl_mpc.data(name='x', shape=[BATCH_SIZE, 13], dtype='int64') y = pfl_mpc.data(name='y', shape=[BATCH_SIZE, 1], dtype='int64') # async data loader loader = fluid.io.DataLoader.from_generator( feed_list=[x, y], capacity=BATCH_SIZE) batch_sample = paddle.reader.compose(batch_feature, batch_label) place = fluid.CPUPlace() loader.set_batch_generator(batch_sample, places=place) # network y_pre = pfl_mpc.layers.fc(input=x, size=1) infer_program = fluid.default_main_program().clone(for_test=False) cost = pfl_mpc.layers.square_error_cost(input=y_pre, label=y) avg_loss = pfl_mpc.layers.mean(cost) optimizer = pfl_mpc.optimizer.SGD(learning_rate=0.001) optimizer.minimize(avg_loss) # loss file loss_file = "/tmp/uci_loss.part{}".format(role) # train exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) epoch_num = 20 for epoch_id in range(epoch_num): start_time = time.time() step = 0 # Method 1: feed data directly # for feature, label in zip(batch_feature(), batch_label()): # mpc_loss = exe.run(feed={"x": feature, "y": label}, fetch_list=[avg_loss]) # Method 2: feed data via loader for sample in loader(): step_start = time.time() mpc_loss = exe.run(feed=sample, fetch_list=[avg_loss]) step_end = time.time() if step % 50 == 0: print('Epoch={}, Step={}, batch_cost={:.4f} s, Loss={},'.format(epoch_id, step, (step_end - step_start), mpc_loss)) with open(loss_file, 'ab') as f: f.write(np.array(mpc_loss).tostring()) step += 1 end_time = time.time() print('Mpc Training of Epoch={} Batch_size={}, epoch_cost={:.4f} s' .format(epoch_num, BATCH_SIZE, (end_time - start_time))) prediction_file = "/tmp/uci_prediction.part{}".format(role) for sample in loader(): prediction = exe.run(program=infer_program, feed=sample, fetch_list=[y_pre]) with open(prediction_file, 'ab') as f: f.write(np.array(prediction).tostring()) break