// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include "core/paddlefl_mpc/mpc_protocol/abstract_network.h" #include "prng_utils.h" namespace aby3 { using AbstractNetwork = paddle::mpc::AbstractNetwork; class CircuitContext { public: CircuitContext(size_t party, std::shared_ptr network, const block& seed = g_zero_block, const block& seed2 = g_zero_block) { init(party, network, seed, seed2); } CircuitContext(const CircuitContext& other) = delete; CircuitContext& operator=(const CircuitContext& other) = delete; void init(size_t party, std::shared_ptr network, block seed, block seed2) { set_party(party); set_network(network); if (equals(seed, g_zero_block)) { seed = block_from_dev_urandom(); } if (equals(seed2, g_zero_block)) { seed2 = block_from_dev_urandom(); } set_random_seed(seed, 0); // seed2 is private set_random_seed(seed2, 2); // 3 for 3-party computation size_t party_pre = (this->party() - 1 + 3) % 3; size_t party_next = (this->party() + 1) % 3; if (party == 1) { block recv_seed = this->network()->template recv(party_next); this->network()->template send(party_pre, seed); seed = recv_seed; } else { this->network()->template send(party_pre, seed); seed = this->network()->template recv(party_next); } set_random_seed(seed, 1); } void set_party(size_t party) { if (party >= 3) { // exception handling } _party = party; } void set_network(std::shared_ptr network) { _network = network; } <<<<<<< HEAD AbstractNetwork* network() { return _network.get(); } void set_random_seed(const block& seed, size_t idx) { if (idx >= 3) { // exception handling } _prng[idx].set_seed(seed); } size_t party() const { return _party; } size_t pre_party() const { return (_party + 3 - 1) % 3; } size_t next_party() const { return (_party + 1) % 3; } template T gen_random(bool next) { return _prng[next].get(); } template class Tensor> void gen_random(Tensor& tensor, bool next) { std::for_each(tensor.data(), tensor.data() + tensor.numel(), [this, next](T& val) { val = this->template gen_random(next); }); } template T gen_random_private() { return _prng[2].get(); } template class Tensor> void gen_random_private(Tensor& tensor) { std::for_each(tensor.data(), tensor.data() + tensor.numel(), [this](T& val) { val = this->template gen_random_private(); }); } template T gen_zero_sharing_arithmetic() { return _prng[0].get() - _prng[1].get(); } template class Tensor> void gen_zero_sharing_arithmetic(Tensor& tensor) { std::for_each(tensor.data(), tensor.data() + tensor.numel(), [this](T& val) { val = this->template gen_zero_sharing_arithmetic(); }); } template T gen_zero_sharing_boolean() { return _prng[0].get() ^ _prng[1].get(); } template class Tensor> void gen_zero_sharing_boolean(Tensor& tensor) { std::for_each(tensor.data(), tensor.data() + tensor.numel(), [this](T& val) { val = this->template gen_zero_sharing_boolean(); }); } template class Tensor> ======= AbstractNetwork* network() { return _network.get(); } void set_random_seed(const block& seed, size_t idx) { if (idx >= 3) { // exception handling } _prng[idx].set_seed(seed); } size_t party() const { return _party; } size_t pre_party() const { return (_party + 3 - 1) % 3; } size_t next_party() const { return (_party + 1) % 3; } template T gen_random(bool next) { return _prng[next].get(); } template class Tensor> void gen_random(Tensor& tensor, bool next) { std::for_each(tensor.data(), tensor.data() + tensor.numel(), [this, next](T& val) { val = this->template gen_random(next); }); } template T gen_random_private() { return _prng[2].get(); } template class Tensor> void gen_random_private(Tensor& tensor) { std::for_each(tensor.data(), tensor.data() + tensor.numel(), [this](T& val) { val = this->template gen_random_private(); }); } template T gen_zero_sharing_arithmetic() { return _prng[0].get() - _prng[1].get(); } template class Tensor> void gen_zero_sharing_arithmetic(Tensor& tensor) { std::for_each(tensor.data(), tensor.data() + tensor.numel(), [this](T& val) { val = this->template gen_zero_sharing_arithmetic(); }); } template T gen_zero_sharing_boolean() { return _prng[0].get() ^ _prng[1].get(); } template class Tensor> void gen_zero_sharing_boolean(Tensor& tensor) { std::for_each(tensor.data(), tensor.data() + tensor.numel(), [this](T& val) { val = this->template gen_zero_sharing_boolean(); }); } template class Tensor> >>>>>>> 5a09665c36ffb7eae2288b3f837d3be18091c259 void ot(size_t sender, size_t receiver, size_t helper, const Tensor* choice, const Tensor* m[2], Tensor* buffer[2], Tensor* ret) { // TODO: check tensor shape equals const size_t numel = buffer[0]->numel(); if (party() == sender) { bool common = helper == next_party(); this->template gen_random(*buffer[0], common); this->template gen_random(*buffer[1], common); for (size_t i = 0; i < numel; ++i) { buffer[0]->data()[i] ^= m[0]->data()[i]; buffer[1]->data()[i] ^= m[1]->data()[i]; } network()->template send(receiver, *buffer[0]); network()->template send(receiver, *buffer[1]); } else if (party() == helper) { bool common = sender == next_party(); this->template gen_random(*buffer[0], common); this->template gen_random(*buffer[1], common); for (size_t i = 0; i < numel; ++i) { buffer[0]->data()[i] = choice->data()[i] & 1 ? buffer[1]->data()[i] : buffer[0]->data()[i]; } network()->template send(receiver, *buffer[0]); } else if (party() == receiver) { network()->template recv(sender, *buffer[0]); network()->template recv(sender, *buffer[1]); network()->template recv(helper, *ret); size_t i = 0; std::for_each(ret->data(), ret->data() + numel, [&buffer, &i, choice, ret](T& in) { bool c = choice->data()[i] & 1; in ^= buffer[c]->data()[i]; ++i;} ); } } private: size_t _party; std::shared_ptr _network; PseudorandomNumberGenerator _prng[3]; }; } // namespace aby3