Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleFL
提交
e8240167
P
PaddleFL
项目概览
PaddlePaddle
/
PaddleFL
通知
35
Star
5
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
6
列表
看板
标记
里程碑
合并请求
4
Wiki
3
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleFL
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
6
Issue
6
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
3
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e8240167
编写于
9月 14, 2020
作者:
H
He, Kai
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add reduce to mean_normalize
上级
aa88beaf
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
93 addition
and
134 deletion
+93
-134
core/paddlefl_mpc/mpc_protocol/aby3_operators.h
core/paddlefl_mpc/mpc_protocol/aby3_operators.h
+14
-0
core/paddlefl_mpc/mpc_protocol/mpc_operators.h
core/paddlefl_mpc/mpc_protocol/mpc_operators.h
+2
-0
core/paddlefl_mpc/operators/mpc_mean_normalize_op.cc
core/paddlefl_mpc/operators/mpc_mean_normalize_op.cc
+30
-6
core/paddlefl_mpc/operators/mpc_mean_normalize_op.h
core/paddlefl_mpc/operators/mpc_mean_normalize_op.h
+16
-4
python/paddle_fl/mpc/layers/data_preprocessing.py
python/paddle_fl/mpc/layers/data_preprocessing.py
+19
-114
python/paddle_fl/mpc/layers/math.py
python/paddle_fl/mpc/layers/math.py
+8
-5
python/paddle_fl/mpc/tests/unittests/test_data_preprocessing.py
.../paddle_fl/mpc/tests/unittests/test_data_preprocessing.py
+4
-5
未找到文件。
core/paddlefl_mpc/mpc_protocol/aby3_operators.h
浏览文件 @
e8240167
...
@@ -381,6 +381,20 @@ public:
...
@@ -381,6 +381,20 @@ public:
FixedTensor
::
calc_precision_recall
(
in
,
&
out_
);
FixedTensor
::
calc_precision_recall
(
in
,
&
out_
);
}
}
void
div
(
const
Tensor
*
lhs
,
const
Tensor
*
rhs
,
Tensor
*
out
)
override
{
auto
lhs_tuple
=
from_tensor
(
lhs
);
auto
rhs_tuple
=
from_tensor
(
rhs
);
auto
out_tuple
=
from_tensor
(
out
);
auto
lhs_
=
std
::
get
<
0
>
(
lhs_tuple
).
get
();
auto
rhs_
=
std
::
get
<
0
>
(
rhs_tuple
).
get
();
auto
out_
=
std
::
get
<
0
>
(
out_tuple
).
get
();
lhs_
->
long_div
(
rhs_
,
out_
);
}
private:
private:
template
<
typename
T
>
template
<
typename
T
>
std
::
tuple
<
std
::
tuple
<
...
...
core/paddlefl_mpc/mpc_protocol/mpc_operators.h
浏览文件 @
e8240167
...
@@ -93,6 +93,8 @@ public:
...
@@ -93,6 +93,8 @@ public:
Tensor
*
out
)
=
0
;
Tensor
*
out
)
=
0
;
virtual
void
calc_precision_recall
(
const
Tensor
*
tp_fp_fn
,
Tensor
*
out
)
=
0
;
virtual
void
calc_precision_recall
(
const
Tensor
*
tp_fp_fn
,
Tensor
*
out
)
=
0
;
virtual
void
div
(
const
Tensor
*
lhs
,
const
Tensor
*
rhs
,
Tensor
*
out
)
=
0
;
};
};
}
// mpc
}
// mpc
...
...
core/paddlefl_mpc/operators/mpc_mean_normalize_op.cc
浏览文件 @
e8240167
...
@@ -39,6 +39,9 @@ class MpcMeanNormalizationOp : public framework::OperatorWithKernel {
...
@@ -39,6 +39,9 @@ class MpcMeanNormalizationOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"SampleNum"
),
true
,
ctx
->
HasInput
(
"SampleNum"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Sample) should not be null."
));
platform
::
errors
::
InvalidArgument
(
"Input(Sample) should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"TotalNum"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(TotalNum) should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Range"
),
true
,
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Range"
),
true
,
platform
::
errors
::
InvalidArgument
(
platform
::
errors
::
InvalidArgument
(
"Output(Range) should not be null."
));
"Output(Range) should not be null."
));
...
@@ -46,13 +49,11 @@ class MpcMeanNormalizationOp : public framework::OperatorWithKernel {
...
@@ -46,13 +49,11 @@ class MpcMeanNormalizationOp : public framework::OperatorWithKernel {
platform
::
errors
::
InvalidArgument
(
platform
::
errors
::
InvalidArgument
(
"Output(Meanor) should not be null."
));
"Output(Meanor) should not be null."
));
int64_t
total_sample_num
=
static_cast
<
int64_t
>
(
ctx
->
Attrs
().
Get
<
int
>
(
"total_sample_num"
));
auto
min_dims
=
ctx
->
GetInputDim
(
"Min"
);
auto
min_dims
=
ctx
->
GetInputDim
(
"Min"
);
auto
max_dims
=
ctx
->
GetInputDim
(
"Max"
);
auto
max_dims
=
ctx
->
GetInputDim
(
"Max"
);
auto
mean_dims
=
ctx
->
GetInputDim
(
"Mean"
);
auto
mean_dims
=
ctx
->
GetInputDim
(
"Mean"
);
auto
sample_num_dims
=
ctx
->
GetInputDim
(
"SampleNum"
);
auto
sample_num_dims
=
ctx
->
GetInputDim
(
"SampleNum"
);
auto
total_num_dims
=
ctx
->
GetInputDim
(
"TotalNum"
);
if
(
ctx
->
IsRuntime
())
{
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
min_dims
,
max_dims
,
PADDLE_ENFORCE_EQ
(
min_dims
,
max_dims
,
...
@@ -77,7 +78,7 @@ class MpcMeanNormalizationOp : public framework::OperatorWithKernel {
...
@@ -77,7 +78,7 @@ class MpcMeanNormalizationOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
sample_num_dims
.
size
(),
2
,
sample_num_dims
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
platform
::
errors
::
InvalidArgument
(
"The dimension of Input(SampleNum) should be equal to
3
"
"The dimension of Input(SampleNum) should be equal to
2
"
"(share_num, party_num). But received (%d)"
,
"(share_num, party_num). But received (%d)"
,
sample_num_dims
.
size
()));
sample_num_dims
.
size
()));
...
@@ -87,6 +88,27 @@ class MpcMeanNormalizationOp : public framework::OperatorWithKernel {
...
@@ -87,6 +88,27 @@ class MpcMeanNormalizationOp : public framework::OperatorWithKernel {
"The party num of Input(SampleNum) and Input(Min) "
"The party num of Input(SampleNum) and Input(Min) "
"should be equal But received (%d) != (%d)"
,
"should be equal But received (%d) != (%d)"
,
sample_num_dims
[
1
],
min_dims
[
1
]));
sample_num_dims
[
1
],
min_dims
[
1
]));
PADDLE_ENFORCE_EQ
(
total_num_dims
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"The dimension of Input(TotalNum) "
"should be 2, But received (%d) != (%d)"
,
total_num_dims
.
size
(),
2
));
PADDLE_ENFORCE_EQ
(
sample_num_dims
[
0
],
total_num_dims
[
0
],
platform
::
errors
::
InvalidArgument
(
"The share num of Input(SampleNum) and Input(TotalNum) "
"should be equal But received (%d) != (%d)"
,
sample_num_dims
[
0
],
total_num_dims
[
0
]));
PADDLE_ENFORCE_EQ
(
total_num_dims
[
1
],
1
,
platform
::
errors
::
InvalidArgument
(
"The shape of Input(TotalNum) "
"should be [share_num, 1] But dims[1] received (%d) != (%d)"
,
total_num_dims
[
1
],
1
));
}
}
ctx
->
SetOutputDim
(
"Range"
,
{
mean_dims
[
0
],
mean_dims
[
2
]});
ctx
->
SetOutputDim
(
"Range"
,
{
mean_dims
[
0
],
mean_dims
[
2
]});
...
@@ -121,6 +143,9 @@ class MpcMeanNormalizationOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -121,6 +143,9 @@ class MpcMeanNormalizationOpMaker : public framework::OpProtoAndCheckerMaker {
"(Tensor, default Tensor<int64_t>) A 1-D tensor with shape [P], "
"(Tensor, default Tensor<int64_t>) A 1-D tensor with shape [P], "
"where P is the party num. Each element contains "
"where P is the party num. Each element contains "
"sample num of party_i."
);
"sample num of party_i."
);
AddInput
(
"TotalNum"
,
"(Tensor, default Tensor<int64_t>) A 1-D tensor with shape [1], "
"Element contains sum of sample num of party_i."
);
AddOutput
(
"Range"
,
AddOutput
(
"Range"
,
"(Tensor, default Tensor<int64_t>) A 1-D tensor with shape [N], "
"(Tensor, default Tensor<int64_t>) A 1-D tensor with shape [N], "
"where N is the feature num. Each element contains "
"where N is the feature num. Each element contains "
...
@@ -129,10 +154,9 @@ class MpcMeanNormalizationOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -129,10 +154,9 @@ class MpcMeanNormalizationOpMaker : public framework::OpProtoAndCheckerMaker {
"(Tensor, default Tensor<int64_t>) A 1-D tensor with shape [N], "
"(Tensor, default Tensor<int64_t>) A 1-D tensor with shape [N], "
"where N is the feature num. Each element contains "
"where N is the feature num. Each element contains "
"global mean of feature_i."
);
"global mean of feature_i."
);
AddAttr
<
int
>
(
"total_sample_num"
,
"(int) Sum of sample nums from all party."
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Mean normalization Operator.
Mean normalization Operator.
When given Input(Min), Input(Max), Input(Mean)
and Input(SampleNum),
When given Input(Min), Input(Max), Input(Mean)
, Input(SampleNum) and Input(TotalNum)
this operator can be used to compute global range and mean for further feature
this operator can be used to compute global range and mean for further feature
scaling.
scaling.
Output(Range) is the global range of all features.
Output(Range) is the global range of all features.
...
...
core/paddlefl_mpc/operators/mpc_mean_normalize_op.h
浏览文件 @
e8240167
...
@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "mpc_op.h"
#include "mpc_op.h"
...
@@ -28,6 +30,7 @@ class MpcMeanNormalizationKernel : public MpcOpKernel<T> {
...
@@ -28,6 +30,7 @@ class MpcMeanNormalizationKernel : public MpcOpKernel<T> {
const
Tensor
*
max
=
context
.
Input
<
Tensor
>
(
"Max"
);
const
Tensor
*
max
=
context
.
Input
<
Tensor
>
(
"Max"
);
const
Tensor
*
mean
=
context
.
Input
<
Tensor
>
(
"Mean"
);
const
Tensor
*
mean
=
context
.
Input
<
Tensor
>
(
"Mean"
);
const
Tensor
*
sample_num
=
context
.
Input
<
Tensor
>
(
"SampleNum"
);
const
Tensor
*
sample_num
=
context
.
Input
<
Tensor
>
(
"SampleNum"
);
const
Tensor
*
total_num
=
context
.
Input
<
Tensor
>
(
"TotalNum"
);
Tensor
*
range
=
context
.
Output
<
Tensor
>
(
"Range"
);
Tensor
*
range
=
context
.
Output
<
Tensor
>
(
"Range"
);
Tensor
*
mean_out
=
context
.
Output
<
Tensor
>
(
"MeanOut"
);
Tensor
*
mean_out
=
context
.
Output
<
Tensor
>
(
"MeanOut"
);
...
@@ -65,9 +68,6 @@ class MpcMeanNormalizationKernel : public MpcOpKernel<T> {
...
@@ -65,9 +68,6 @@ class MpcMeanNormalizationKernel : public MpcOpKernel<T> {
range
->
mutable_data
<
T
>
(
range
->
mutable_data
<
T
>
(
framework
::
make_ddim
({
share_num
,
feat_num
}),
context
.
GetPlace
(),
0
);
framework
::
make_ddim
({
share_num
,
feat_num
}),
context
.
GetPlace
(),
0
);
// TODO: get total_sample_num by reduing size
int
total_sample_num
=
context
.
Attr
<
int
>
(
"total_sample_num"
);
Tensor
sample_num_
;
Tensor
sample_num_
;
sample_num_
.
ShareDataWith
(
*
sample_num
);
sample_num_
.
ShareDataWith
(
*
sample_num
);
...
@@ -84,8 +84,20 @@ class MpcMeanNormalizationKernel : public MpcOpKernel<T> {
...
@@ -84,8 +84,20 @@ class MpcMeanNormalizationKernel : public MpcOpKernel<T> {
mean_out
->
mutable_data
<
T
>
(
mean_out
->
mutable_data
<
T
>
(
framework
::
make_ddim
({
share_num
,
feat_num
}),
context
.
GetPlace
(),
0
);
framework
::
make_ddim
({
share_num
,
feat_num
}),
context
.
GetPlace
(),
0
);
Tensor
total_num_
;
total_num_
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
share_num
,
feat_num
}),
context
.
GetPlace
(),
0
);
// broadcasting total_num to shape [share_num, feat_num]
for
(
int
i
=
0
;
i
<
share_num
;
++
i
)
{
std
::
fill
(
total_num_
.
data
<
T
>
()
+
i
*
feat_num
,
total_num_
.
data
<
T
>
()
+
(
i
+
1
)
*
feat_num
,
total_num
->
data
<
T
>
()[
i
]);
}
mpc
::
MpcInstance
::
mpc_instance
()
->
mpc_protocol
()
mpc
::
MpcInstance
::
mpc_instance
()
->
mpc_protocol
()
->
mpc_operators
()
->
scale
(
mean_out
,
1.0
/
total_sample_num
,
mean_out
);
->
mpc_operators
()
->
div
(
mean_out
,
&
total_num_
,
mean_out
);
}
}
};
};
...
...
python/paddle_fl/mpc/layers/data_preprocessing.py
浏览文件 @
e8240167
...
@@ -17,10 +17,11 @@ mpc data preprocessing op layers.
...
@@ -17,10 +17,11 @@ mpc data preprocessing op layers.
from
paddle.fluid.data_feeder
import
check_type
,
check_dtype
from
paddle.fluid.data_feeder
import
check_type
,
check_dtype
from
..framework
import
check_mpc_variable_and_dtype
from
..framework
import
check_mpc_variable_and_dtype
from
..mpc_layer_helper
import
MpcLayerHelper
from
..mpc_layer_helper
import
MpcLayerHelper
from
.math
import
reduce_sum
__all__
=
[
'mean_normalize'
]
__all__
=
[
'mean_normalize'
]
def
mean_normalize
(
f_min
,
f_max
,
f_mean
,
sample_num
,
total_sample_num
):
def
mean_normalize
(
f_min
,
f_max
,
f_mean
,
sample_num
):
'''
'''
Mean normalization is a method used to normalize the range of independent
Mean normalization is a method used to normalize the range of independent
variables or features of data.
variables or features of data.
...
@@ -40,7 +41,6 @@ def mean_normalize(f_min, f_max, f_mean, sample_num, total_sample_num):
...
@@ -40,7 +41,6 @@ def mean_normalize(f_min, f_max, f_mean, sample_num, total_sample_num):
sample_num (Variable): A 1-D tensor with shape [P], where P is the
sample_num (Variable): A 1-D tensor with shape [P], where P is the
party num. Each element contains sample num
party num. Each element contains sample num
of party_i.
of party_i.
total_sample_num (int): Sum of sample nums from all party.
Returns:
Returns:
f_range (Variable): A 1-D tensor with shape [N], where N is the
f_range (Variable): A 1-D tensor with shape [N], where N is the
...
@@ -51,121 +51,26 @@ def mean_normalize(f_min, f_max, f_mean, sample_num, total_sample_num):
...
@@ -51,121 +51,26 @@ def mean_normalize(f_min, f_max, f_mean, sample_num, total_sample_num):
range of feature_i.
range of feature_i.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
from multiprocessing import Manager
from multiprocessing import Process
import numpy as np
import paddle.fluid as fluid
import paddle_fl.mpc as pfl_mpc
import paddle_fl.mpc as pfl_mpc
import mpc_data_utils as mdu
import paddle_fl.mpc.data_utils.aby3 as aby3
redis_server = "127.0.0.1"
redis_port = 9937
test_f_num = 100
# party i owns 2 + 2*i rows of data
test_row_split = range(2, 10, 2)
def mean_norm_naive(f_mat):
ma = np.amax(f_mat, axis=0)
mi = np.amin(f_mat, axis=0)
return ma - mi, np.mean(f_mat, axis=0)
def gen_data(f_num, sample_nums):
f_mat = np.random.rand(np.sum(sample_nums), f_num)
f_min, f_max, f_mean = [], [], []
prev_idx = 0
for n in sample_nums:
i = prev_idx
j = i + n
ma = np.amax(f_mat[i:j], axis=0)
mi = np.amin(f_mat[i:j], axis=0)
me = np.mean(f_mat[i:j], axis=0)
f_min.append(mi)
f_max.append(ma)
f_mean.append(me)
prev_idx += n
f_min = np.array(f_min).reshape(sample_nums.size, f_num)
f_max = np.array(f_max).reshape(sample_nums.size, f_num)
f_mean = np.array(f_mean).reshape(sample_nums.size, f_num)
return f_mat, f_min, f_max, f_mean
class MeanNormDemo:
def mean_normalize(self, **kwargs):
"""
mean_normalize op ut
:param kwargs:
:return:
"""
role = kwargs['role']
pfl_mpc.init("aby3", role, "localhost", redis_server, redis_port)
pfl_mpc.init("aby3", role, "localhost", redis_server, redis_port)
mi = pfl_mpc.data(name='mi', shape=self.input_size, dtype='int64')
# 2 for share, 4 for 4 party, 100 for feat_num
ma = pfl_mpc.data(name='ma', shape=self.input_size, dtype='int64')
input_size = [2, 4, 100]
me = pfl_mpc.data(name='me', shape=self.input_size, dtype='int64')
sn = pfl_mpc.data(name='sn', shape=self.input_size, dtype='int64')
mi = pfl_mpc.data(name='mi', shape=input_size, dtype='int64')
ma = pfl_mpc.data(name='ma', shape=input_size, dtype='int64')
me = pfl_mpc.data(name='me', shape=input_size, dtype='int64')
sn = pfl_mpc.data(name='sn', shape=input_size[:-1], dtype='int64')
out0, out1 = pfl_mpc.layers.mean_normalize(f_min=mi, f_max=ma,
out0, out1 = pfl_mpc.layers.mean_normalize(f_min=mi, f_max=ma,
f_mean=me, sample_num=sn, total_sample_num=self.total_num
)
f_mean=me, sample_num=sn
)
exe = fluid.Executor(place=fluid.CPUPlace())
exe = fluid.Executor(place=fluid.CPUPlace())
f_range, f_mean = exe.run(feed={'mi': kwargs['min'],
# feed encrypted data
'ma': kwargs['max'], 'me': kwargs['mean'],
f_range, f_mean = exe.run(feed={'mi': f_min, 'ma': f_max,
'sn': kwargs['sample_num']},fetch_list=[out0, out1])
'me': f_mean, 'sn': sample_num}, fetch_list=[out0, out1])
self.f_range_list.append(f_range)
self.f_mean_list.append(f_mean)
def run(self):
f_nums = test_f_num
sample_nums = np.array(test_row_split)
mat, mi, ma, me = gen_data(f_nums, sample_nums)
self.input_size = [len(sample_nums), f_nums]
self.total_num = mat.shape[0]
# simulating encrypting data
share = lambda x: np.array([x * mdu.mpc_one_share] * 2).astype('int64').reshape(
[2] + list(x.shape))
self.f_range_list = Manager().list()
self.f_mean_list = Manager().list()
proc = list()
for role in range(3):
args = {'role': role, 'min': share(mi), 'max': share(ma),
'mean': share(me), 'sample_num': share(sample_nums)}
p = Process(target=self.mean_normalize, kwargs=args)
proc.append(p)
p.start()
for p in proc:
p.join()
f_r = aby3.reconstruct(np.array(self.f_range_list))
f_m = aby3.reconstruct(np.array(self.f_mean_list))
plain_r, plain_m = mean_norm_naive(mat)
print("max error in featrue range:", np.max(np.abs(f_r - plain_r)))
print("max error in featrue mean:", np.max(np.abs(f_m - plain_m)))
MeanNormDemo().run()
'''
'''
helper
=
MpcLayerHelper
(
"mean_normalize"
,
**
locals
())
helper
=
MpcLayerHelper
(
"mean_normalize"
,
**
locals
())
...
@@ -180,6 +85,8 @@ def mean_normalize(f_min, f_max, f_mean, sample_num, total_sample_num):
...
@@ -180,6 +85,8 @@ def mean_normalize(f_min, f_max, f_mean, sample_num, total_sample_num):
f_range
=
helper
.
create_mpc_variable_for_type_inference
(
dtype
=
f_min
.
dtype
)
f_range
=
helper
.
create_mpc_variable_for_type_inference
(
dtype
=
f_min
.
dtype
)
f_mean_out
=
helper
.
create_mpc_variable_for_type_inference
(
dtype
=
f_min
.
dtype
)
f_mean_out
=
helper
.
create_mpc_variable_for_type_inference
(
dtype
=
f_min
.
dtype
)
total_num
=
reduce_sum
(
sample_num
)
op_type
=
'mean_normalize'
op_type
=
'mean_normalize'
helper
.
append_op
(
helper
.
append_op
(
...
@@ -189,14 +96,12 @@ def mean_normalize(f_min, f_max, f_mean, sample_num, total_sample_num):
...
@@ -189,14 +96,12 @@ def mean_normalize(f_min, f_max, f_mean, sample_num, total_sample_num):
"Max"
:
f_max
,
"Max"
:
f_max
,
"Mean"
:
f_mean
,
"Mean"
:
f_mean
,
"SampleNum"
:
sample_num
,
"SampleNum"
:
sample_num
,
"TotalNum"
:
total_num
,
},
},
outputs
=
{
outputs
=
{
"Range"
:
f_range
,
"Range"
:
f_range
,
"MeanOut"
:
f_mean_out
,
"MeanOut"
:
f_mean_out
,
},
},
attrs
=
{
)
# TODO: remove attr total_sample_num, reducing sample_num instead
"total_sample_num"
:
total_sample_num
,
})
return
f_range
,
f_mean_out
return
f_range
,
f_mean_out
python/paddle_fl/mpc/layers/math.py
浏览文件 @
e8240167
...
@@ -18,6 +18,7 @@ mpc math op layers.
...
@@ -18,6 +18,7 @@ mpc math op layers.
from
..framework
import
MpcVariable
from
..framework
import
MpcVariable
from
..framework
import
check_mpc_variable_and_dtype
from
..framework
import
check_mpc_variable_and_dtype
from
..mpc_layer_helper
import
MpcLayerHelper
from
..mpc_layer_helper
import
MpcLayerHelper
from
.ml
import
reshape
__all__
=
[
__all__
=
[
'mean'
,
'mean'
,
...
@@ -194,6 +195,8 @@ def reduce_sum(input, dim=None, keep_dim=False, name=None):
...
@@ -194,6 +195,8 @@ def reduce_sum(input, dim=None, keep_dim=False, name=None):
inputs
=
{
'X'
:
input
},
inputs
=
{
'X'
:
input
},
outputs
=
{
'Out'
:
out
},
outputs
=
{
'Out'
:
out
},
attrs
=
attrs
)
attrs
=
attrs
)
if
out
.
shape
==
(
2
,):
out
=
reshape
(
out
,
list
(
out
.
shape
)
+
[
1
])
return
out
return
out
python/paddle_fl/mpc/tests/unittests/test_data_preprocessing.py
浏览文件 @
e8240167
...
@@ -78,10 +78,10 @@ class TestOpMeanNormalize(test_op_base.TestOpBase):
...
@@ -78,10 +78,10 @@ class TestOpMeanNormalize(test_op_base.TestOpBase):
mi
=
pfl_mpc
.
data
(
name
=
'mi'
,
shape
=
self
.
input_size
,
dtype
=
'int64'
)
mi
=
pfl_mpc
.
data
(
name
=
'mi'
,
shape
=
self
.
input_size
,
dtype
=
'int64'
)
ma
=
pfl_mpc
.
data
(
name
=
'ma'
,
shape
=
self
.
input_size
,
dtype
=
'int64'
)
ma
=
pfl_mpc
.
data
(
name
=
'ma'
,
shape
=
self
.
input_size
,
dtype
=
'int64'
)
me
=
pfl_mpc
.
data
(
name
=
'me'
,
shape
=
self
.
input_size
,
dtype
=
'int64'
)
me
=
pfl_mpc
.
data
(
name
=
'me'
,
shape
=
self
.
input_size
,
dtype
=
'int64'
)
sn
=
pfl_mpc
.
data
(
name
=
'sn'
,
shape
=
self
.
input_size
,
dtype
=
'int64'
)
sn
=
pfl_mpc
.
data
(
name
=
'sn'
,
shape
=
self
.
input_size
[:
-
1
],
dtype
=
'int64'
)
out0
,
out1
=
pfl_mpc
.
layers
.
mean_normalize
(
f_min
=
mi
,
f_max
=
ma
,
f_mean
=
me
,
sample_num
=
sn
,
total_sample_num
=
self
.
total_num
)
out0
,
out1
=
pfl_mpc
.
layers
.
mean_normalize
(
f_min
=
mi
,
f_max
=
ma
,
f_mean
=
me
,
sample_num
=
sn
)
exe
=
fluid
.
Executor
(
place
=
fluid
.
CPUPlace
())
exe
=
fluid
.
Executor
(
place
=
fluid
.
CPUPlace
())
...
@@ -98,7 +98,6 @@ class TestOpMeanNormalize(test_op_base.TestOpBase):
...
@@ -98,7 +98,6 @@ class TestOpMeanNormalize(test_op_base.TestOpBase):
mat
,
mi
,
ma
,
me
=
gen_data
(
f_nums
,
sample_nums
)
mat
,
mi
,
ma
,
me
=
gen_data
(
f_nums
,
sample_nums
)
self
.
input_size
=
[
len
(
sample_nums
),
f_nums
]
self
.
input_size
=
[
len
(
sample_nums
),
f_nums
]
self
.
total_num
=
mat
.
shape
[
0
]
share
=
lambda
x
:
np
.
array
([
x
*
mdu
.
mpc_one_share
]
*
2
).
astype
(
'int64'
).
reshape
(
share
=
lambda
x
:
np
.
array
([
x
*
mdu
.
mpc_one_share
]
*
2
).
astype
(
'int64'
).
reshape
(
[
2
]
+
list
(
x
.
shape
))
[
2
]
+
list
(
x
.
shape
))
...
@@ -116,7 +115,7 @@ class TestOpMeanNormalize(test_op_base.TestOpBase):
...
@@ -116,7 +115,7 @@ class TestOpMeanNormalize(test_op_base.TestOpBase):
plain_r
,
plain_m
=
mean_norm_naive
(
mat
)
plain_r
,
plain_m
=
mean_norm_naive
(
mat
)
self
.
assertTrue
(
np
.
allclose
(
f_r
,
plain_r
,
atol
=
1e-4
))
self
.
assertTrue
(
np
.
allclose
(
f_r
,
plain_r
,
atol
=
1e-4
))
self
.
assertTrue
(
np
.
allclose
(
f_m
,
plain_m
,
atol
=
1e-
3
))
self
.
assertTrue
(
np
.
allclose
(
f_m
,
plain_m
,
atol
=
1e-
4
))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录