提交 63ae7e62 编写于 作者: H He, Kai

add mpc operator add, move mean_normalize to ml.py

上级 57c82ab5
......@@ -319,17 +319,24 @@ public:
auto a_tuple = from_tensor(in);
auto a_ = std::get<0>(a_tuple).get();
auto out_tuple = from_tensor(out);
auto out_ = std::get<0>(out_tuple).get();
if (pos_info) {
auto b_tuple = from_tensor<BoolTensor>(pos_info);
auto b_ = std::get<0>(b_tuple).get();
auto out_tuple = from_tensor(out);
auto out_ = std::get<0>(out_tuple).get();
a_->max_pooling(out_, b_);
} else {
a_->max_pooling(out_, nullptr);
}
void max(const Tensor* in, Tensor* out) override {
auto a_tuple = from_tensor(in);
auto a_ = std::get<0>(a_tuple).get();
auto out_tuple = from_tensor(out);
auto out_ = std::get<0>(out_tuple).get();
a_->max_pooling(out_, nullptr);
}
void inverse_square_root(const Tensor* in, Tensor* out) override {
......
......@@ -82,6 +82,10 @@ public:
// for filter in other shape, reshape input first
virtual void max_pooling(const Tensor* in, Tensor* out, Tensor* pos_info) {}
// column wise max
// in shape [n, ...], out shape [1, ...]
virtual void max(const Tensor* in, Tensor* out) {}
virtual void inverse_square_root(const Tensor* in, Tensor* out) = 0;
virtual void predicts_to_indices(const Tensor* in,
......
......@@ -54,10 +54,10 @@ class MpcMeanNormalizationKernel : public MpcOpKernel<T> {
->mpc_operators()->neg(min, &neg_min);
mpc::MpcInstance::mpc_instance()->mpc_protocol()
->mpc_operators()->max_pooling(&neg_min, &neg_min_global, nullptr);
->mpc_operators()->max(&neg_min, &neg_min_global);
mpc::MpcInstance::mpc_instance()->mpc_protocol()
->mpc_operators()->max_pooling(max, &max_global, nullptr);
->mpc_operators()->max(max, &max_global);
range->mutable_data<T>(
framework::make_ddim({share_num, 1, feat_num}), context.GetPlace(), 0);
......
......@@ -37,8 +37,6 @@ from . import rnn
from .rnn import *
from . import metric_op
from .metric_op import *
from . import data_preprocessing
from .data_preprocessing import *
__all__ = []
__all__ += basic.__all__
......@@ -48,4 +46,3 @@ __all__ += ml.__all__
__all__ += compare.__all__
__all__ += conv.__all__
__all__ += metric_op.__all__
__all__ += data_preprocessing.__all__
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
mpc data preprocessing op layers.
"""
from paddle.fluid.data_feeder import check_type, check_dtype
from ..framework import check_mpc_variable_and_dtype
from ..mpc_layer_helper import MpcLayerHelper
from .math import reduce_sum
__all__ = ['mean_normalize']
def mean_normalize(f_min, f_max, f_mean, sample_num):
'''
Mean normalization is a method used to normalize the range of independent
variables or features of data.
Refer to:
https://en.wikipedia.org/wiki/Feature_scaling#Mean_normalization
Args:
f_min (Variable): A 2-D tensor with shape [P, N], where P is the party
num and N is the feature num. Each row contains the
local min feature val of N features.
f_max (Variable): A 2-D tensor with shape [P, N], where P is the party
num and N is the feature num. Each row contains the
local max feature val of N features.
f_mean (Variable): A 2-D tensor with shape [P, N], where P is the party
num and N is the feature num. Each row contains the
local min feature val of N features.
sample_num (Variable): A 1-D tensor with shape [P], where P is the
party num. Each element contains sample num
of party_i.
Returns:
f_range (Variable): A 1-D tensor with shape [N], where N is the
feature num. Each element contains global
range of feature_i.
f_mean_out (Variable): A 1-D tensor with shape [N], where N is the
feature num. Each element contains global
range of feature_i.
Examples:
.. code-block:: python
import paddle_fl.mpc as pfl_mpc
pfl_mpc.init("aby3", role, "localhost", redis_server, redis_port)
# 2 for share, 4 for 4 party, 100 for feat_num
input_size = [2, 4, 100]
mi = pfl_mpc.data(name='mi', shape=input_size, dtype='int64')
ma = pfl_mpc.data(name='ma', shape=input_size, dtype='int64')
me = pfl_mpc.data(name='me', shape=input_size, dtype='int64')
sn = pfl_mpc.data(name='sn', shape=input_size[:-1], dtype='int64')
out0, out1 = pfl_mpc.layers.mean_normalize(f_min=mi, f_max=ma,
f_mean=me, sample_num=sn)
exe = fluid.Executor(place=fluid.CPUPlace())
# feed encrypted data
f_range, f_mean = exe.run(feed={'mi': f_min, 'ma': f_max,
'me': f_mean, 'sn': sample_num}, fetch_list=[out0, out1])
'''
helper = MpcLayerHelper("mean_normalize", **locals())
# dtype = helper.input_dtype()
dtype = 'int64'
check_dtype(dtype, 'f_min', ['int64'], 'mean_normalize')
check_dtype(dtype, 'f_max', ['int64'], 'mean_normalize')
check_dtype(dtype, 'f_mean', ['int64'], 'mean_normalize')
check_dtype(dtype, 'sample_num', ['int64'], 'mean_normalize')
f_range = helper.create_mpc_variable_for_type_inference(dtype=f_min.dtype)
f_mean_out= helper.create_mpc_variable_for_type_inference(dtype=f_min.dtype)
total_num = reduce_sum(sample_num)
op_type = 'mean_normalize'
helper.append_op(
type='mpc_' + op_type,
inputs={
"Min": f_min,
"Max": f_max,
"Mean": f_mean,
"SampleNum": sample_num,
"TotalNum": total_num,
},
outputs={
"Range": f_range,
"MeanOut": f_mean_out,
},
)
return f_range, f_mean_out
......@@ -37,6 +37,7 @@ __all__ = [
'pool2d',
'batch_norm',
'reshape',
'mean_normalize',
]
......@@ -680,3 +681,92 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
"XShape": x_shape})
return helper.append_activation(out)
def mean_normalize(f_min, f_max, f_mean, sample_num):
'''
Mean normalization is a method used to normalize the range of independent
variables or features of data.
Refer to:
https://en.wikipedia.org/wiki/Feature_scaling#Mean_normalization
Args:
f_min (Variable): A 2-D tensor with shape [P, N], where P is the party
num and N is the feature num. Each row contains the
local min feature val of N features.
f_max (Variable): A 2-D tensor with shape [P, N], where P is the party
num and N is the feature num. Each row contains the
local max feature val of N features.
f_mean (Variable): A 2-D tensor with shape [P, N], where P is the party
num and N is the feature num. Each row contains the
local min feature val of N features.
sample_num (Variable): A 1-D tensor with shape [P], where P is the
party num. Each element contains sample num
of party_i.
Returns:
f_range (Variable): A 1-D tensor with shape [N], where N is the
feature num. Each element contains global
range of feature_i.
f_mean_out (Variable): A 1-D tensor with shape [N], where N is the
feature num. Each element contains global
range of feature_i.
Examples:
.. code-block:: python
import paddle_fl.mpc as pfl_mpc
pfl_mpc.init("aby3", role, "localhost", redis_server, redis_port)
# 2 for share, 4 for 4 party, 100 for feat_num
input_size = [2, 4, 100]
mi = pfl_mpc.data(name='mi', shape=input_size, dtype='int64')
ma = pfl_mpc.data(name='ma', shape=input_size, dtype='int64')
me = pfl_mpc.data(name='me', shape=input_size, dtype='int64')
sn = pfl_mpc.data(name='sn', shape=input_size[:-1], dtype='int64')
out0, out1 = pfl_mpc.layers.mean_normalize(f_min=mi, f_max=ma,
f_mean=me, sample_num=sn)
exe = fluid.Executor(place=fluid.CPUPlace())
# feed encrypted data
f_range, f_mean = exe.run(feed={'mi': f_min, 'ma': f_max,
'me': f_mean, 'sn': sample_num}, fetch_list=[out0, out1])
'''
helper = MpcLayerHelper("mean_normalize", **locals())
# dtype = helper.input_dtype()
dtype = 'int64'
check_dtype(dtype, 'f_min', ['int64'], 'mean_normalize')
check_dtype(dtype, 'f_max', ['int64'], 'mean_normalize')
check_dtype(dtype, 'f_mean', ['int64'], 'mean_normalize')
check_dtype(dtype, 'sample_num', ['int64'], 'mean_normalize')
f_range = helper.create_mpc_variable_for_type_inference(dtype=f_min.dtype)
f_mean_out= helper.create_mpc_variable_for_type_inference(dtype=f_min.dtype)
# to avoid circular dependencies
from .math import reduce_sum
total_num = reduce_sum(sample_num)
op_type = 'mean_normalize'
helper.append_op(
type='mpc_' + op_type,
inputs={
"Min": f_min,
"Max": f_max,
"Mean": f_mean,
"SampleNum": sample_num,
"TotalNum": total_num,
},
outputs={
"Range": f_range,
"MeanOut": f_mean_out,
},
)
return f_range, f_mean_out
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册