未验证 提交 37203246 编写于 作者: M mapingshuo 提交者: GitHub

Merge pull request #77 from barrierye/update-model

update code to make test acc=0.116
......@@ -12,16 +12,23 @@ FL-mobile是一个集移动端算法模拟调研、训练和部署为一体的
## 准备工作
- 安装mpirun
- python安装grpc
```shell
pip install grpcio==1.28.1
```
- 安装Paddle
```shell
pip install paddlepaddle==1.8.0
```
## 快速开始
我们以Leaf数据集中的[reddit数据](https://github.com/TalwalkarLab/leaf/tree/master/data/reddit)为例,用LSTM建模,在simulator
中给出一个单机训练的例子,通过这个例子,您能了解simulator的基础用法。
我们以Leaf数据集中的[reddit数据](https://github.com/TalwalkarLab/leaf/tree/master/data/reddit)为例,参考[这篇论文](https://arxiv.org/pdf/1812.01097.pdf),用LSTM建模,在simulator中给出一个单机训练的例子。通过这个例子,您能了解simulator的基础用法。
### 准备数据
......@@ -52,6 +59,8 @@ cd ..
### 开始训练
在训练中,我们每轮用均匀采样(Uniform Sample)方式选取`10`个Client进行训练,每个Client在本地用该Client对应的全部数据(未经shuffle)训练`1`个epoch,总共训练`100`轮。在本实验中使用的Client学习率为`1.0`,FedAvg学习率为`1.85 `
```shell
export PYTHONPATH=$PWD:$PYTHONPATH
mpirun -np 2 python application.py lm_data
......@@ -59,11 +68,13 @@ mpirun -np 2 python application.py lm_data
### 训练结果
在测试集上,测试Top1为 `11.6% `
```shell
framework.py : INFO infer results: 0.085723
framework.py : INFO infer results: 0.116334
```
即:在测试集上的,测试Top1为 8.6%
相同参数的非联邦训练测试Top1为`11.1%`
## 添加自己的数据集和Trainer
......
......@@ -36,17 +36,22 @@ simulator = SimulationFramework(role_maker)
language_model_trainer = LanguageModelTrainer()
language_model_trainer.set_trainer_configs({
"epoch": 3,
"epoch": 1,
"max_steps_in_epoch": -1,
"lr": 0.1,
"lr": 1.0,
"batch_size": 5,
"max_grad_norm": 5,
"n_hidden": 256,
"num_layers": 2,
"init_scale": 0.1,
"dropout_prob": 0.0,
})
sampler = UniformSampler()
sampler.set_sample_num(30)
sampler.set_sample_num(10)
sampler.set_min_ins_num(1)
test_sampler = Test1percentSampler()
fed_avg_optimizer = FedAvgOptimizer(learning_rate=2.0)
fed_avg_optimizer = FedAvgOptimizer(learning_rate=1.85)
simulator.set_trainer(language_model_trainer)
simulator.set_sampler(sampler)
......@@ -68,5 +73,8 @@ elif simulator.is_simulator():
print("dates: {}".format(dates))
time.sleep(10)
simulator.run_simulation(
base_path, dates, sim_num_everyday=100, do_test=True, test_skip_day=1)
simulator.run_simulation(base_path,
dates,
sim_num_everyday=100,
do_test=True,
test_skip_day=1)
......@@ -108,7 +108,7 @@ def train_reader(lines):
input_data, input_length = process_x(data_x, VOCAB)
target_data = process_y(data_y, VOCAB)
yield [input_data] + [target_data]
yield [input_data] + [target_data] + [input_length] + [data_mask]
return local_iter
......
......@@ -34,10 +34,10 @@ def train_one_user(arg_dict, trainer_config):
max_training_steps = trainer_config["max_training_steps"]
batch_size = trainer_config["batch_size"]
# logging.info("training one user...")
main_program = fluid.Program.parse_from_string(trainer_config[
"main_program_desc"])
startup_program = fluid.Program.parse_from_string(trainer_config[
"startup_program_desc"])
main_program = fluid.Program.parse_from_string(
trainer_config["main_program_desc"])
startup_program = fluid.Program.parse_from_string(
trainer_config["startup_program_desc"])
place = fluid.CPUPlace()
exe = fluid.Executor(place)
scope = fluid.global_scope()
......@@ -46,8 +46,7 @@ def train_one_user(arg_dict, trainer_config):
exit()
exe.run(startup_program)
feeder = fluid.DataFeeder(
feed_list=trainer_config["input_names"],
feeder = fluid.DataFeeder(feed_list=trainer_config["input_names"],
place=place,
program=main_program)
data_server_endpoints = arg_dict["data_endpoints"]
......@@ -76,36 +75,43 @@ def train_one_user(arg_dict, trainer_config):
epoch = trainer_config["epoch"]
max_steps_in_epoch = trainer_config.get("max_steps_in_epoch", -1)
metrics = trainer_config["metrics"]
metric_keys = metrics.keys()
fetch_list = [main_program.global_block().var(trainer_config["loss_name"])]
for key in metric_keys:
fetch_list.append(main_program.global_block().var(metrics[key]))
fetch_list = []
for var in trainer_config["target_names"]:
fetch_list.append(var)
seq_len = 10
for ei in range(epoch):
fetch_res_list = []
trained_sample_num = 0
step = 0
fetch_res_list = []
total_loss = 0.0
total_correct = 0
num_layers = trainer_config["num_layers"]
hidden_size = trainer_config["n_hidden"]
tot_loss, tot_correct = 0, 0
tot_samples = 0
init_hidden, init_cell = generate_init_data(batch_size, num_layers,
hidden_size)
for data in train_reader():
feed_data, input_lengths = prepare_input(batch_size, data,
init_hidden, init_cell)
fetch_res = exe.run(main_program,
feed=feeder.feed(data),
feed=feeder.feed(feed_data),
fetch_list=fetch_list)
loss, last_hidden, last_cell, correct = fetch_res
init_hidden = np.array(last_hidden)
init_cell = np.array(last_cell)
tot_loss += np.array(loss)
tot_correct += np.array(correct)
tot_samples += np.sum(input_lengths)
step += 1
trained_sample_num += len(data)
fetch_res_list.append([x[0] for x in fetch_res])
fetch_res_list.append([np.array(loss), np.array(correct)])
if max_steps_in_epoch != -1 and step >= max_steps_in_epoch:
break
if show_metric and trained_sample_num > 0:
loss = sum([x[0] for x in fetch_res_list]) / trained_sample_num
print("loss: {}, ppl: {}".format(loss, np.exp(loss)))
for i, key in enumerate(metric_keys):
if key == "correct":
value = float(sum([x[i + 1] for x in fetch_res_list
])) / trained_sample_num
print("correct: {}".format(value / seq_len))
loss = tot_loss / step
acc = float(tot_correct) / tot_samples
print("loss: {}, acc: {}".format(loss, acc))
local_updated_param_dict = {}
# update user param
......@@ -142,10 +148,10 @@ def infer_one_user(arg_dict, trainer_config):
# run startup program, set params
uid = arg_dict["uid"]
batch_size = trainer_config["batch_size"]
startup_program = fluid.Program.parse_from_string(trainer_config[
"startup_program_desc"])
infer_program = fluid.Program.parse_from_string(trainer_config[
"infer_program_desc"])
startup_program = fluid.Program.parse_from_string(
trainer_config["startup_program_desc"])
infer_program = fluid.Program.parse_from_string(
trainer_config["infer_program_desc"])
place = fluid.CPUPlace()
exe = fluid.Executor(place)
scope = fluid.global_scope()
......@@ -169,7 +175,6 @@ def infer_one_user(arg_dict, trainer_config):
arg_dict["global_params"], scope)
# reader
date = arg_dict["date"]
global_param_dict = arg_dict["global_params"]
user_data = data_client.get_data_by_uid(uid, date)
......@@ -179,8 +184,7 @@ def infer_one_user(arg_dict, trainer_config):
# run infer program
os.mkdir(arg_dict["infer_result_dir"])
#pred_file = open(arg_dict["infer_result_dir"] + '/' + "pred_file", "w")
feeder = fluid.DataFeeder(
feed_list=trainer_config["input_names"],
feeder = fluid.DataFeeder(feed_list=trainer_config["input_names"],
place=place,
program=infer_program)
......@@ -189,26 +193,51 @@ def infer_one_user(arg_dict, trainer_config):
fetch_res = []
sample_count = 0
total_loss = 0.0
total_correct = 0
iters = 0
steps = 0
seq_len = 10
num_layers = trainer_config["num_layers"]
hidden_size = trainer_config["n_hidden"]
tot_correct, tot_loss = 0, 0
tot_samples, tot_batches = 0, 0
init_hidden, init_cell = generate_init_data(batch_size, num_layers,
hidden_size)
for data in infer_reader():
# feed_data = [x["features"] + [x["label"]] for x in data]
# prediction, acc_val= exe.run(infer_program,
pred, correct_count, loss = exe.run(infer_program,
feed=feeder.feed(data),
feed_data, input_lengths = prepare_input(batch_size, data, init_hidden,
init_cell)
fetch_res = exe.run(infer_program,
feed=feeder.feed(feed_data),
fetch_list=fetch_list)
total_loss += loss
total_correct += correct_count
steps += 1
sample_count += len(data)
correct = float(total_correct) / (seq_len * sample_count)
# logging.info("correct: {}".format(correct))
loss, last_hidden, last_cell, correct = fetch_res
cost_eval = np.array(loss)
init_hidden = np.array(last_hidden)
init_cell = np.array(last_cell)
correct_val = np.array(correct)
tot_loss += cost_eval
tot_correct += correct_val
tot_samples += np.sum(input_lengths)
tot_batches += 1
loss = tot_loss / tot_batches
acc = float(tot_correct) / tot_samples
logging.info("infer acc: {}".format(acc))
with open(arg_dict["infer_result_dir"] + "/res", "w") as f:
f.write("%d\t%f\n" % (1, correct))
f.write("%d\t%f\n" % (1, acc))
def prepare_input(batch_size, data, init_hidden, init_cell):
init_hidden = np.split(init_hidden, batch_size)
init_cell = np.split(init_cell, batch_size)
data = [[features] + [labels] + [seq_len_ph] + [seq_mask_ph] + [init_hidden[i]] + [init_cell[i] ] \
for i, (features, labels, seq_len_ph, seq_mask_ph) in enumerate(data)]
input_lengths = [x[2] for x in data]
return data, input_lengths
def generate_init_data(batch_size, num_layers, hidden_size):
init_hidden = np.zeros((batch_size, num_layers, hidden_size),
dtype='float32')
init_cell = np.zeros((batch_size, num_layers, hidden_size),
dtype='float32')
return init_hidden, init_cell
def save_and_upload(arg_dict, trainer_config, dfs_upload_path):
......@@ -219,7 +248,6 @@ def save_and_upload(arg_dict, trainer_config, dfs_upload_path):
def evaluate_a_group(group):
group_list = []
for label, pred, _ in group:
# print("%s\t%s\n" % (label, pred))
group_list.append((int(label), float(pred)))
random.shuffle(group_list)
labels = [x[0] for x in group_list]
......@@ -236,7 +264,6 @@ class LanguageModelTrainer(TrainerBase):
"""
LanguageModelTrainer only support training with PaddlePaddle
"""
def __init__(self):
super(LanguageModelTrainer, self).__init__()
self.main_program_ = fluid.Program()
......@@ -270,10 +297,13 @@ class LanguageModelTrainer(TrainerBase):
"""
with fluid.program_guard(self.main_program_, self.startup_program_):
self.input_model_ = LanguageModel()
model_configs = {}
model_configs = self.trainer_config
self.input_model_.build_model(model_configs)
optimizer = fluid.optimizer.SGD(
learning_rate=self.trainer_config["lr"])
learning_rate=self.trainer_config["lr"],
grad_clip=fluid.clip.GradientClipByGlobalNorm(
clip_norm=self.trainer_config["max_grad_norm"]))
optimizer.minimize(self.input_model_.get_model_loss())
self.main_program_desc_ = self.main_program_.desc.serialize_to_string()
......@@ -283,13 +313,16 @@ class LanguageModelTrainer(TrainerBase):
self.input_model_.get_model_loss_name())
self.update_trainer_configs(
"input_names",
self.input_model_.get_model_input_names(), )
self.input_model_.get_model_input_names(),
)
self.update_trainer_configs(
"target_names",
self.input_model_.get_target_names(), )
self.input_model_.get_target_names(),
)
self.update_trainer_configs(
"metrics",
self.input_model_.get_model_metrics(), )
self.input_model_.get_model_metrics(),
)
self.update_trainer_configs("show_metric", True)
self.update_trainer_configs("max_training_steps", "inf")
self.update_trainer_configs("shuffle", False)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册