Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleFL
提交
23bf60fc
P
PaddleFL
项目概览
PaddlePaddle
/
PaddleFL
通知
35
Star
5
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
6
列表
看板
标记
里程碑
合并请求
4
Wiki
3
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleFL
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
6
Issue
6
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
3
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
23bf60fc
编写于
11月 25, 2019
作者:
Q
qjing666
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update femnist dataset
上级
cd696e5d
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
78 addition
and
47 deletion
+78
-47
paddle_fl/dataset/femnist.py
paddle_fl/dataset/femnist.py
+70
-0
paddle_fl/examples/femnist_demo/fl_trainer.py
paddle_fl/examples/femnist_demo/fl_trainer.py
+6
-43
paddle_fl/examples/femnist_demo/run.sh
paddle_fl/examples/femnist_demo/run.sh
+1
-3
setup.py
setup.py
+1
-1
未找到文件。
paddle_fl/dataset/femnist.py
0 → 100644
浏览文件 @
23bf60fc
import
requests
import
os
import
json
import
tarfile
import
random
url
=
"https://paddlefl.bj.bcebos.com/leaf/"
target_path
=
"femnist_data"
tar_path
=
target_path
+
".tar.gz"
print
(
tar_path
)
def
download
(
url
):
r
=
requests
.
get
(
url
)
with
open
(
tar_path
,
'wb'
)
as
f
:
f
.
write
(
r
.
content
)
def
extract
(
tar_path
):
tar
=
tarfile
.
open
(
tar_path
,
"r:gz"
)
file_names
=
tar
.
getnames
()
for
file_name
in
file_names
:
tar
.
extract
(
file_name
)
tar
.
close
()
def
train
(
trainer_id
,
inner_step
,
batch_size
,
count_by_step
):
if
not
os
.
path
.
exists
(
target_path
):
print
(
"Preparing data..."
)
if
not
os
.
path
.
exists
(
tar_path
):
download
(
url
+
tar_path
)
extract
(
tar_path
)
def
train_data
():
train_file
=
open
(
"./femnist_data/train/all_data_%d_niid_0_keep_0_train_9.json"
%
trainer_id
,
'r'
)
json_train
=
json
.
load
(
train_file
)
users
=
json_train
[
"users"
]
rand
=
random
.
randrange
(
0
,
len
(
users
))
# random choose a user from each trainer
cur_user
=
users
[
rand
]
print
(
'training using '
+
cur_user
)
train_images
=
json_train
[
"user_data"
][
cur_user
][
'x'
]
train_labels
=
json_train
[
"user_data"
][
cur_user
][
'y'
]
if
count_by_step
:
for
i
in
xrange
(
inner_step
*
batch_size
):
yield
train_images
[
i
%
(
len
(
train_images
))],
train_labels
[
i
%
(
len
(
train_images
))]
else
:
for
i
in
xrange
(
len
(
train_images
)):
yield
train_images
[
i
],
train_labels
[
i
]
train_file
.
close
()
return
train_data
def
test
(
trainer_id
,
inner_step
,
batch_size
,
count_by_step
):
if
not
os
.
path
.
exists
(
target_path
):
print
(
"Preparing data..."
)
if
not
os
.
path
.
exists
(
tar_path
):
download
(
url
+
tar_path
)
extract
(
tar_path
)
def
test_data
():
test_file
=
open
(
"./femnist_data/test/all_data_%d_niid_0_keep_0_test_9.json"
%
trainer_id
,
'r'
)
json_test
=
json
.
load
(
test_file
)
users
=
json_test
[
"users"
]
for
user
in
users
:
test_images
=
json_test
[
'user_data'
][
user
][
'x'
]
test_labels
=
json_test
[
'user_data'
][
user
][
'y'
]
for
i
in
xrange
(
len
(
test_images
)):
yield
test_images
[
i
],
test_labels
[
i
]
test_file
.
close
()
return
test_data
paddle_fl/examples/femnist_demo/fl_trainer.py
浏览文件 @
23bf60fc
from
paddle_fl.core.trainer.fl_trainer
import
FLTrainerFactory
from
paddle_fl.core.trainer.fl_trainer
import
FLTrainerFactory
from
paddle_fl.core.master.fl_job
import
FLRunTimeJob
from
paddle_fl.core.master.fl_job
import
FLRunTimeJob
import
paddle_fl.dataset.femnist
import
numpy
import
numpy
import
sys
import
sys
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
logging
import
logging
import
math
import
math
import
random
import
json
logging
.
basicConfig
(
filename
=
"test.log"
,
filemode
=
"w"
,
format
=
"%(asctime)s %(name)s:%(levelname)s:%(message)s"
,
datefmt
=
"%d-%M-%Y %H:%M:%S"
,
level
=
logging
.
DEBUG
)
logging
.
basicConfig
(
filename
=
"test.log"
,
filemode
=
"w"
,
format
=
"%(asctime)s %(name)s:%(levelname)s:%(message)s"
,
datefmt
=
"%d-%M-%Y %H:%M:%S"
,
level
=
logging
.
DEBUG
)
...
@@ -22,36 +21,6 @@ trainer.start()
...
@@ -22,36 +21,6 @@ trainer.start()
print
(
trainer
.
_step
)
print
(
trainer
.
_step
)
test_program
=
trainer
.
_main_program
.
clone
(
for_test
=
True
)
test_program
=
trainer
.
_main_program
.
clone
(
for_test
=
True
)
def
data_generater
(
trainer_id
,
inner_step
,
batch_size
,
count_by_step
):
train_file
=
open
(
"./femnist_data/train/all_data_%d_niid_0_keep_0_train_9.json"
%
trainer_id
,
'r'
)
test_file
=
open
(
"./femnist_data/test/all_data_%d_niid_0_keep_0_test_9.json"
%
trainer_id
,
'r'
)
json_train
=
json
.
load
(
train_file
)
json_test
=
json
.
load
(
test_file
)
users
=
json_train
[
"users"
]
rand
=
random
.
randrange
(
0
,
len
(
users
))
# random choose a user from each trainer
cur_user
=
users
[
rand
]
print
(
'training using '
+
cur_user
)
def
train_data
():
train_images
=
json_train
[
"user_data"
][
cur_user
][
'x'
]
train_labels
=
json_train
[
"user_data"
][
cur_user
][
'y'
]
if
count_by_step
:
for
i
in
xrange
(
inner_step
*
batch_size
):
yield
train_images
[
i
%
(
len
(
train_images
))],
train_labels
[
i
%
(
len
(
train_images
))]
else
:
for
i
in
xrange
(
len
(
train_images
)):
yield
train_images
[
i
],
train_labels
[
i
]
def
test_data
():
for
user
in
users
:
test_images
=
json_test
[
'user_data'
][
user
][
'x'
]
test_labels
=
json_test
[
'user_data'
][
user
][
'y'
]
for
i
in
xrange
(
len
(
test_images
)):
yield
test_images
[
i
],
test_labels
[
i
]
train_file
.
close
()
test_file
.
close
()
return
train_data
,
test_data
img
=
fluid
.
layers
.
data
(
name
=
'img'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
img
=
fluid
.
layers
.
data
(
name
=
'img'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
img
,
label
],
place
=
fluid
.
CPUPlace
())
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
img
,
label
],
place
=
fluid
.
CPUPlace
())
...
@@ -67,13 +36,6 @@ def train_test(train_test_program, train_test_feed, train_test_reader):
...
@@ -67,13 +36,6 @@ def train_test(train_test_program, train_test_feed, train_test_reader):
acc_val_mean
=
numpy
.
array
(
acc_set
).
mean
()
acc_val_mean
=
numpy
.
array
(
acc_set
).
mean
()
return
acc_val_mean
return
acc_val_mean
def
compute_privacy_budget
(
sample_ratio
,
epsilon
,
step
,
delta
):
E
=
2
*
epsilon
*
math
.
sqrt
(
step
*
sample_ratio
)
print
(
"({0}, {1})-DP"
.
format
(
E
,
delta
))
epoch_id
=
0
epoch_id
=
0
step
=
0
step
=
0
epoch
=
3000
epoch
=
3000
...
@@ -90,13 +52,15 @@ while not trainer.stop():
...
@@ -90,13 +52,15 @@ while not trainer.stop():
if
epoch_id
>
epoch
:
if
epoch_id
>
epoch
:
break
break
print
(
"epoch %d start train"
%
(
epoch_id
))
print
(
"epoch %d start train"
%
(
epoch_id
))
train_data
,
test_data
=
data_generater
(
trainer_id
,
inner_step
=
trainer
.
_step
,
batch_size
=
64
,
count_by_step
=
count_by_step
)
#
train_data,test_data= data_generater(trainer_id,inner_step=trainer._step,batch_size=64,count_by_step=count_by_step)
train_reader
=
paddle
.
batch
(
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
train_data
,
buf_size
=
500
),
paddle
.
reader
.
shuffle
(
paddle_fl
.
dataset
.
femnist
.
train
(
trainer_id
,
inner_step
=
trainer
.
_step
,
batch_size
=
64
,
count_by_step
=
count_by_step
)
,
buf_size
=
500
),
batch_size
=
64
)
batch_size
=
64
)
test_reader
=
paddle
.
batch
(
test_reader
=
paddle
.
batch
(
test_data
,
batch_size
=
64
)
paddle_fl
.
dataset
.
femnist
.
test
(
trainer_id
,
inner_step
=
trainer
.
_step
,
batch_size
=
64
,
count_by_step
=
count_by_step
),
batch_size
=
64
)
if
count_by_step
:
if
count_by_step
:
for
step_id
,
data
in
enumerate
(
train_reader
()):
for
step_id
,
data
in
enumerate
(
train_reader
()):
acc
=
trainer
.
run
(
feeder
.
feed
(
data
),
fetch
=
[
"accuracy_0.tmp_0"
])
acc
=
trainer
.
run
(
feeder
.
feed
(
data
),
fetch
=
[
"accuracy_0.tmp_0"
])
...
@@ -116,7 +80,6 @@ while not trainer.stop():
...
@@ -116,7 +80,6 @@ while not trainer.stop():
train_test_feed
=
feeder
)
train_test_feed
=
feeder
)
print
(
"Test with epoch %d, accuracy: %s"
%
(
epoch_id
,
acc_val
))
print
(
"Test with epoch %d, accuracy: %s"
%
(
epoch_id
,
acc_val
))
compute_privacy_budget
(
sample_ratio
=
0.001
,
epsilon
=
0.1
,
step
=
step
,
delta
=
0.00001
)
if
trainer_id
==
0
:
if
trainer_id
==
0
:
save_dir
=
(
output_folder
+
"/epoch_%d"
)
%
epoch_id
save_dir
=
(
output_folder
+
"/epoch_%d"
)
%
epoch_id
trainer
.
save_inference_program
(
output_folder
)
trainer
.
save_inference_program
(
output_folder
)
paddle_fl/examples/femnist_demo/run.sh
浏览文件 @
23bf60fc
#killall python
#killall python
#python fl_master.py
python fl_master.py
#sleep 2
python
-u
fl_server.py
>
log/server0.log &
sleep
2
sleep
2
python
-u
fl_scheduler.py
>
scheduler.log &
python
-u
fl_scheduler.py
>
scheduler.log &
sleep
2
sleep
2
...
...
setup.py
浏览文件 @
23bf60fc
...
@@ -29,7 +29,7 @@ def python_version():
...
@@ -29,7 +29,7 @@ def python_version():
max_version
,
mid_version
,
min_version
=
python_version
()
max_version
,
mid_version
,
min_version
=
python_version
()
REQUIRED_PACKAGES
=
[
REQUIRED_PACKAGES
=
[
'six >= 1.10.0'
,
'protobuf >= 3.1.0'
,
'paddlepaddle >= 1.6'
'six >= 1.10.0'
,
'protobuf >= 3.1.0'
,
'paddlepaddle >= 1.6'
,
]
]
if
max_version
<
3
:
if
max_version
<
3
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录