fl_trainer.py 8.6 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
G
guru4elephant 已提交
15
import logging
Q
qjing666 已提交
16
from paddle_fl.core.scheduler.agent_master import FLWorkerAgent
17
import numpy
18
import hmac
19 20
import hashlib
from .diffiehellman.diffiehellman import DiffieHellman
G
guru4elephant 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34

class FLTrainerFactory(object):
    def __init__(self):
        pass

    def create_fl_trainer(self, job):
        strategy = job._strategy
        trainer = None
        if strategy._fed_avg == True:
            trainer = FedAvgTrainer()
            trainer.set_trainer_job(job)
        elif strategy._dpsgd == True:
            trainer = FLTrainer()
            trainer.set_trainer_job(job)
35 36 37
        elif strategy._sec_agg == True:
            trainer = SecAggTrainer()
            trainer.set_trainer_job(job)
G
guru4elephant 已提交
38 39 40 41 42 43
        trainer.set_trainer_job(job)
        return trainer


class FLTrainer(object):
    def __init__(self):
G
guru4elephant 已提交
44
        self._logger = logging.getLogger("FLTrainer")
G
guru4elephant 已提交
45 46 47 48 49 50 51 52 53 54
        pass

    def set_trainer_job(self, job):
        self._startup_program = \
            job._trainer_startup_program
        self._main_program = \
            job._trainer_main_program
        self._step = job._strategy._inner_step
        self._feed_names = job._feed_names
        self._target_names = job._target_names
Q
qjing666 已提交
55
        self._scheduler_ep = job._scheduler_ep
G
giddenslee 已提交
56 57
        self._current_ep = None
        self.cur_step = 0
G
guru4elephant 已提交
58 59

    def start(self):
Q
qjing666 已提交
60 61 62
        #current_ep = "to be added"
        self.agent = FLWorkerAgent(self._scheduler_ep, self._current_ep)
        self.agent.connect_scheduler()
G
guru4elephant 已提交
63 64 65
        self.exe = fluid.Executor(fluid.CPUPlace())
        self.exe.run(self._startup_program)

G
guru4elephant 已提交
66 67 68
    def run(self, feed, fetch):
        self._logger.debug("begin to run")
        self.exe.run(self._main_program,
Q
qjing666 已提交
69 70
                      feed=feed,
                      fetch_list=fetch)
G
guru4elephant 已提交
71
        self._logger.debug("end to run current batch")
G
giddenslee 已提交
72
        self.cur_step += 1
G
guru4elephant 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

    def save_inference_program(self, output_folder):
        target_vars = []
        infer_program = self._main_program.clone(for_test=True)
        for name in self._target_names:
            tmp_var = self._main_program.block(0)._find_var_recursive(name)
            target_vars.append(tmp_var)
        fluid.io.save_inference_model(
            output_folder,
            self._feed_names,
            target_vars,
            self.exe,
            main_program=infer_program)

    def stop(self):
        # ask for termination with master endpoint
        # currently not open sourced, will release the code later
        # TODO(guru4elephant): add connection with master
G
giddenslee 已提交
91 92 93 94
        if self.cur_step != 0:
            while not self.agent.finish_training():
                print('wait others finish')
                continue
Q
qjing666 已提交
95
        while not self.agent.can_join_training():
G
giddenslee 已提交
96 97 98 99
            print("wait permit")
            continue
        print("ready to train")
        return False
G
guru4elephant 已提交
100

101

G
guru4elephant 已提交
102 103 104 105 106 107
class FedAvgTrainer(FLTrainer):
    def __init__(self):
        super(FedAvgTrainer, self).__init__()
        pass

    def start(self):
G
giddenslee 已提交
108
        #current_ep = "to be added"
Q
qjing666 已提交
109
        self.agent = FLWorkerAgent(self._scheduler_ep, self._current_ep)
G
giddenslee 已提交
110
        self.agent.connect_scheduler()
G
guru4elephant 已提交
111 112 113 114 115 116 117 118
        self.exe = fluid.Executor(fluid.CPUPlace())
        self.exe.run(self._startup_program)

    def set_trainer_job(self, job):
        super(FedAvgTrainer, self).set_trainer_job(job)
        self._send_program = job._trainer_send_program
        self._recv_program = job._trainer_recv_program

G
guru4elephant 已提交
119 120 121
    def reset(self):
        self.cur_step = 0

Q
qjing666 已提交
122
    def run_with_epoch(self,reader,feeder,fetch,num_epoch):
123
        self._logger.debug("begin to run recv program")
Q
qjing666 已提交
124
        self.exe.run(self._recv_program)
125 126
        epoch = 0
        for i in range(num_epoch):
127 128 129 130
                print(epoch)
                for data in reader():
                    self.exe.run(self._main_program,
                           feed=feeder.feed(data),
Q
qjing666 已提交
131
                           fetch_list=fetch)
132 133
                self.cur_step += 1
                epoch += 1
134
        self._logger.debug("begin to run send program")
Q
qjing666 已提交
135
        self.exe.run(self._send_program)
G
guru4elephant 已提交
136
    def run(self, feed, fetch):
G
guru4elephant 已提交
137 138
        self._logger.debug("begin to run FedAvgTrainer, cur_step=%d, inner_step=%d" %
                           (self.cur_step, self._step))
G
guru4elephant 已提交
139
        if self.cur_step % self._step == 0:
G
guru4elephant 已提交
140
            self._logger.debug("begin to run recv program")
G
guru4elephant 已提交
141
            self.exe.run(self._recv_program)
G
guru4elephant 已提交
142
        self._logger.debug("begin to run current step")
G
giddenslee 已提交
143
        loss = self.exe.run(self._main_program,
G
guru4elephant 已提交
144 145 146
                     feed=feed,
                     fetch_list=fetch)
        if self.cur_step % self._step == 0:
G
guru4elephant 已提交
147
            self._logger.debug("begin to run send program")
G
guru4elephant 已提交
148 149
            self.exe.run(self._send_program)
        self.cur_step += 1
F
frankwhzhang 已提交
150
        return loss
151 152 153
       
 

G
giddenslee 已提交
154 155


156 157 158 159 160
class SecAggTrainer(FLTrainer):
    def __init__(self):
        super(SecAggTrainer, self).__init__()
        pass

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    @property
    def trainer_id(self):
        return self._trainer_id

    @trainer_id.setter
    def trainer_id(self, s):
        self._trainer_id = s

    @property
    def trainer_num(self):
        return self._trainer_num

    @trainer_num.setter
    def trainer_num(self, s):
        self._trainer_num = s

    @property
    def key_dir(self):
        return self._key_dir

    @key_dir.setter
    def key_dir(self, s):
        self._key_dir = s

    @property
    def step_id(self):
        return self._step_id

    @step_id.setter
    def step_id(self, s):
        self._step_id = s

193
    def start(self):
194 195
        self.agent = FLWorkerAgent(self._scheduler_ep, self._current_ep)
        self.agent.connect_scheduler()
196 197 198 199 200 201 202 203
        self.exe = fluid.Executor(fluid.CPUPlace())
        self.exe.run(self._startup_program)
        self.cur_step = 0

    def set_trainer_job(self, job):
        super(SecAggTrainer, self).set_trainer_job(job)
        self._send_program = job._trainer_send_program
        self._recv_program = job._trainer_recv_program
204 205
        self_step = job._strategy._inner_step
        self._param_name_list = job._strategy._param_name_list
206 207 208 209

    def reset(self):
        self.cur_step = 0

210
    def run(self, feed, fetch):
211 212 213 214 215 216
        self._logger.debug("begin to run SecAggTrainer, cur_step=%d, inner_step=%d" %
                           (self.cur_step, self._step))
        if self.cur_step % self._step == 0:
            self._logger.debug("begin to run recv program")
            self.exe.run(self._recv_program)
        scope = fluid.global_scope()
G
guru4elephant 已提交
217
        self._logger.debug("begin to run current step")
G
giddenslee 已提交
218
        loss = self.exe.run(self._main_program,
G
guru4elephant 已提交
219 220 221
                     feed=feed,
                     fetch_list=fetch)
        if self.cur_step % self._step == 0:
G
guru4elephant 已提交
222
            self._logger.debug("begin to run send program")
223 224
            noise = 0.0
            scale = pow(10.0, 5)
225
            digestmod=hashlib.sha256
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
            # 1. load priv key and other's pub key
            dh = DiffieHellman(group=15, key_length=256)
            dh.load_private_key(self._key_dir + str(self._trainer_id) + "_priv_key.txt")
            key = str(self._step_id).encode("utf-8")
            for i in range(self._trainer_num):
                if i != self._trainer_id:
                    f = open(self._key_dir + str(i) + "_pub_key.txt", "r")
                    public_key = int(f.read())
                    dh.generate_shared_secret(public_key, echo_return_key=True)
                    msg = dh.shared_key.encode("utf-8")
                    hex_res1 = hmac.new(key=key, msg=msg, digestmod=digestmod).hexdigest()
                    current_noise = int(hex_res1[0:8], 16) / scale
                    if i > self._trainer_id:
                        noise = noise + current_noise
                    else:
                        noise = noise - current_noise

243
            scope = fluid.global_scope()
244 245 246
            for param_name in self._param_name_list:
                fluid.global_scope().var(param_name + str(self._trainer_id)).get_tensor().set(
                    numpy.array(scope.find_var(param_name + str(self._trainer_id)).get_tensor()) + noise, fluid.CPUPlace())
G
guru4elephant 已提交
247 248
            self.exe.run(self._send_program)
        self.cur_step += 1
F
frankwhzhang 已提交
249
        return loss
G
guru4elephant 已提交
250