testsuite.py 6.6 KB
Newer Older
J
jhjiangcs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np

import paddle.fluid.core as core
from paddle.fluid.op import Operator


def create_op(scope, op_type, inputs, outputs, attrs, cache_list=None):
    kwargs = dict()

    op_maker = core.op_proto_and_checker_maker
    op_role_attr_name = op_maker.kOpRoleAttrName()

    if op_role_attr_name not in attrs:
        attrs[op_role_attr_name] = int(op_maker.OpRole.Forward)

    def __create_var__(name, var_name):
        scope.var(var_name).get_tensor()
        kwargs[name].append(var_name)

    for in_name, in_dup in Operator.get_op_inputs(op_type):
        if in_name in inputs:
            kwargs[in_name] = []
            if in_dup:
                sub_in = inputs[in_name]
                for item in sub_in:
                    sub_in_name, _ = item[0], item[1]
                    __create_var__(in_name, sub_in_name)
            else:
                __create_var__(in_name, in_name)
    if cache_list != None and isinstance(cache_list, list):
        for name in cache_list:
            kwargs[name] = []
            scope.var(name)
            kwargs[name].append(name)

    for out_name, out_dup in Operator.get_op_outputs(op_type):
        if out_name in outputs:
            kwargs[out_name] = []
            if out_dup:
                sub_out = outputs[out_name]
                for item in sub_out:
                    sub_out_name, _ = item[0], item[1]
                    __create_var__(out_name, sub_out_name)
            else:
                __create_var__(out_name, out_name)

    for attr_name in Operator.get_op_attr_names(op_type):
        if attr_name in attrs:
            kwargs[attr_name] = attrs[attr_name]

    return Operator(op_type, **kwargs)


def set_input(scope, op, inputs, place):
    def __set_input__(var_name, var):
        if isinstance(var, tuple) or isinstance(var, np.ndarray):
            tensor = scope.find_var(var_name).get_tensor()
            if isinstance(var, tuple):
                tensor.set_recursive_sequence_lengths(var[1])
                var = var[0]
            tensor._set_dims(var.shape)
            tensor.set(var, place)
        elif isinstance(var, float):
            scope.find_var(var_name).set_float(var)
        elif isinstance(var, int):
            scope.find_var(var_name).set_int(var)

    for in_name, in_dup in Operator.get_op_inputs(op.type()):
        if in_name in inputs:
            if in_dup:
                sub_in = inputs[in_name]
                for item in sub_in:
                    sub_in_name, sub_in_val = item[0], item[1]
                    __set_input__(sub_in_name, sub_in_val)
            else:
                __set_input__(in_name, inputs[in_name])


def append_input_output(block, op_proto, np_list, is_input, dtype):
    '''Insert VarDesc and generate Python variable instance'''
    proto_list = op_proto.inputs if is_input else op_proto.outputs

    def create_var(block, name, np_list, var_proto):
        dtype = None
        shape = None
        lod_level = None
        if name not in np_list:
            assert var_proto.intermediate, "{} not found".format(name)
        else:
            # inferece the dtype from numpy value.
            np_value = np_list[name]
            if isinstance(np_value, tuple):
                dtype = np_value[0].dtype
                # output shape, lod should be infered from input.
                if is_input:
                    shape = list(np_value[0].shape)
                    lod_level = len(np_value[1])
            else:
                dtype = np_value.dtype
                if is_input:
                    shape = list(np_value.shape)
                    lod_level = 0
        return block.create_var(
            dtype=dtype, shape=shape, lod_level=lod_level, name=name)

    var_dict = {}
    for var_proto in proto_list:
        var_name = str(var_proto.name)
        if (var_name not in np_list) and var_proto.dispensable:
            continue
        if is_input:
            assert (var_name in np_list) or (var_proto.dispensable), \
                "Missing {} as input".format(var_name)
        if var_proto.duplicable:
            assert isinstance(np_list[var_name], list), \
                "Duplicable {} should be set as list".format(var_name)
            var_list = []
            for (name, np_value) in np_list[var_name]:
                var_list.append(
                    create_var(block, name, {name: np_value}, var_proto))
            var_dict[var_name] = var_list
        else:
            var_dict[var_name] = create_var(block, var_name, np_list, var_proto)

    return var_dict


def append_loss_ops(block, output_names):
    mean_inputs = list(map(block.var, output_names))

    if len(mean_inputs) == 1:
        loss = block.create_var(dtype=mean_inputs[0].dtype, shape=[2, 1])
        op = block.append_op(
            inputs={"X": mean_inputs}, outputs={"Out": loss}, type='mpc_mean')
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
    else:
        avg_sum = []
        for cur_loss in mean_inputs:
156
            cur_avg_loss = block.create_var(dtype=cur_loss.dtype, shape=[2, 1])
J
jhjiangcs 已提交
157 158 159
            op = block.append_op(
                inputs={"X": [cur_loss]},
                outputs={"Out": [cur_avg_loss]},
160
                type="mpc_mean")
J
jhjiangcs 已提交
161 162 163 164
            op.desc.infer_var_type(block.desc)
            op.desc.infer_shape(block.desc)
            avg_sum.append(cur_avg_loss)

165
        loss_sum = block.create_var(dtype=avg_sum[0].dtype, shape=[2, 1])
J
jhjiangcs 已提交
166
        op_sum = block.append_op(
167
            inputs={"X": avg_sum}, outputs={"Out": loss_sum}, type='mpc_sum')
J
jhjiangcs 已提交
168 169 170
        op_sum.desc.infer_var_type(block.desc)
        op_sum.desc.infer_shape(block.desc)

171
        loss = block.create_var(dtype=loss_sum.dtype, shape=[2, 1])
J
jhjiangcs 已提交
172 173 174
        op_loss = block.append_op(
            inputs={"X": loss_sum},
            outputs={"Out": loss},
175
            type='mpc_scale',
J
jhjiangcs 已提交
176 177 178 179
            attrs={'scale': 1.0 / float(len(avg_sum))})
        op_loss.desc.infer_var_type(block.desc)
        op_loss.desc.infer_shape(block.desc)
    return loss