test_op_add.py 6.1 KB
Newer Older
J
update  
jingqinghe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module test add op.

"""
import unittest
from multiprocessing import Manager

import numpy as np
import paddle.fluid as fluid
import paddle_fl.mpc as pfl_mpc
import paddle_fl.mpc.data_utils.aby3 as aby3

import test_op_base


class TestOpAdd(test_op_base.TestOpBase):

    def elementwise_add(self, **kwargs):
        """
        Add two variables with one dimension.
        :param kwargs:
        :return:
        """
        role = kwargs['role']
        d_1 = kwargs['data_1'][role]
        d_2 = kwargs['data_2'][role]
        expected_out = kwargs['expect_results'][role]

        pfl_mpc.init("aby3", role, "localhost", self.server, int(self.port))
        x = pfl_mpc.data(name='x', shape=[4], dtype='int64')
        y = pfl_mpc.data(name='y', shape=[4], dtype='int64')
        op_add = pfl_mpc.layers.elementwise_add(x=x, y=y)
        math_add = x + y
        exe = fluid.Executor(place=fluid.CPUPlace())
        results = exe.run(feed={'x': d_1, 'y': d_2}, fetch_list=[op_add, math_add])

        self.assertTrue(np.allclose(results[0], results[1]))
        self.assertEqual(results[0].shape, (2, 4))
        self.assertTrue(np.allclose(results[0], expected_out))

    def multi_dim_add(self, **kwargs):
        """
        Add two variables with multi dimensions.
        :return:
        """
        role = kwargs['role']
        d_1 = kwargs['data_1'][role]
        d_2 = kwargs['data_2'][role]
        expected_out = kwargs['expect_results'][role]

        pfl_mpc.init("aby3", role, "localhost", self.server, int(self.port))
        x = pfl_mpc.data(name='x', shape=[2, 2], dtype='int64')
        y = pfl_mpc.data(name='y', shape=[2, 2], dtype='int64')
        add = x + y
        exe = fluid.Executor(place=fluid.CPUPlace())
        results = exe.run(feed={'x': d_1, 'y': d_2}, fetch_list=[add])

        self.assertTrue(np.allclose(results[0], expected_out))

    def diff_dim_add(self, **kwargs):
        """
        Add with different dimensions.
        :param kwargs:
        :return:
        """
        role = kwargs['role']
        d_1 = kwargs['data_1'][role]
        d_2 = kwargs['data_2'][role]
        return_results = kwargs['return_results']

        pfl_mpc.init("aby3", role, "localhost", self.server, int(self.port))
        x = pfl_mpc.data(name='x', shape=[3, 4], dtype='int64')
        y = pfl_mpc.data(name='y', shape=[4], dtype='int64')
        math_add = x + y
        exe = fluid.Executor(place=fluid.CPUPlace())
        results = exe.run(feed={'x': d_1, 'y': d_2}, fetch_list=[math_add])

        self.assertEqual(results[0].shape, (2, 3, 4))
        return_results.append(results[0])

    def test_elementwise_add(self):
        data_1 = [np.array([[0, 1, 2, 3],
                            [0, 1, 2, 3]]).astype('int64')] * self.party_num
        data_2 = [np.array([[4, 3, 2, 1],
                            [4, 3, 2, 1]]).astype('int64')] * self.party_num
        expect_results = [np.array([[4, 4, 4, 4],
                                    [4, 4, 4, 4]])] * self.party_num
        ret = self.multi_party_run(target=self.elementwise_add,
                                   data_1=data_1,
                                   data_2=data_2,
                                   expect_results=expect_results)
        self.assertEqual(ret[0], True)

    def test_multi_dim_add(self):
        data_1 = [np.array([[[1, 1], [-1, -1]],
                            [[1, 1], [-1, -1]]]).astype('int64')] * self.party_num
        data_2 = [np.array([[[-1, -1], [1, 1]],
                            [[-1, -1], [1, 1]]]).astype('int64')] * self.party_num
        expect_results = [np.array([[[0, 0], [0, 0]],
                                    [[0, 0], [0, 0]]])] * self.party_num
        ret = self.multi_party_run(target=self.multi_dim_add,
                                   data_1=data_1,
                                   data_2=data_2,
                                   expect_results=expect_results)
        self.assertEqual(ret[0], True)

    def test_diff_dim_add(self):
        data_1 = np.full((3, 4), fill_value=2)
        data_2 = np.ones((4,))
        data_1_shares = aby3.make_shares(data_1)
        data_2_shares = aby3.make_shares(data_2)
        data_1_all3shares = np.array([aby3.get_aby3_shares(data_1_shares, i) for i in range(3)])
        data_2_all3shares = np.array([aby3.get_aby3_shares(data_2_shares, i) for i in range(3)])

        return_results = Manager().list()
        ret = self.multi_party_run(target=self.diff_dim_add,
                                   data_1=data_1_all3shares,
                                   data_2=data_2_all3shares,
                                   return_results=return_results)
        self.assertEqual(ret[0], True)
        revealed = aby3.reconstruct(np.array(return_results))
        expected_out = np.array([[3, 3, 3, 3], [3, 3, 3, 3], [3, 3, 3, 3]])
        self.assertTrue(np.allclose(revealed, expected_out, atol=1e-4))

    def test_elementwise_add_dim_error(self):
        data_1 = [np.array([0, 1, 2, 3]).astype('int64')] * self.party_num
        data_2 = [np.array([4, 3, 2, 1]).astype('int64')] * self.party_num
        expect_results = [np.array([[4, 4, 4, 4],
                                    [4, 4, 4, 4]])] * self.party_num
        ret = self.multi_party_run(target=self.elementwise_add,
                                   data_1=data_1,
                                   data_2=data_2,
                                   expect_results=expect_results)
        self.assertTrue(isinstance(ret[0], ValueError))


if __name__ == '__main__':
    unittest.main()