ml.py 11.4 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
J
jingqinghe 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
mpc ml op layers.
"""
from functools import reduce

from paddle.fluid.data_feeder import check_type, check_dtype
import numpy
from ..framework import MpcVariable
22
from ..framework import check_mpc_variable_and_dtype
J
jingqinghe 已提交
23 24
from ..mpc_layer_helper import MpcLayerHelper

K
Kai He 已提交
25 26 27 28 29 30 31
__all__ = [
    'fc', 
    'relu', 
    'softmax',
    'sigmoid_cross_entropy_with_logits',
]

J
jingqinghe 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
       name=None):
    """
    **Fully Connected Layer**
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
    is not None, a bias variable will be created and added to the output.
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
    When the input is a single Tensor(or LoDTensor):
    .. math::
        Out = Act({XW + b})
    When the input is a list of Tensor(or LoDTensor):
    .. math::
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
    In the above equation:
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
    * :math:`b`: The bias parameter created by this layer (if needed).
    * :math:`Act`: The activation function.
    * :math:`Out`: The output Tensor.
    .. code-block:: text
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size
            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)
        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)
        Case 2:
        Given a list of Tensor:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size
            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)
            out = fluid.layers.fc(input=[data_1, data_2], size=2)
        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)
    Args:
        input (MpcVariable|list of MpcVariable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
        size(int): The number of output units in this layer, which also means the feature size of output
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        MpcVariable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
    Raises:
        ValueError: If dimensions of the input Tensor is less than 2.
    Examples: todo
    """

    helper = MpcLayerHelper("fc", **locals())
    check_type(input, 'input', (list, tuple, MpcVariable), 'fc')
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', MpcVariable, 'fc')
    dtype = helper.input_dtype()
    check_dtype(dtype, 'input', ['int64'], 'fc')
    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
        if num_flatten_dims == -1:
            num_flatten_dims = len(input_shape) - 1
            param_num_flatten_dims = num_flatten_dims
        else:
K
Kai He 已提交
130
            param_num_flatten_dims = num_flatten_dims + 1 # The first dimension '2' of input is share number.
J
jingqinghe 已提交
131
        param_shape = [
K
Kai He 已提交
132 133
                          reduce(lambda a, b: a * b, input_shape[param_num_flatten_dims:], 1)
                      ] + [size]
J
jingqinghe 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        w = helper.create_mpc_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_mpc_variable_for_type_inference(dtype)
        helper.append_op(
            type="mpc_mul",
            inputs={"X": input_var,
                    "Y": w},
            outputs={"Out": tmp},
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_mpc_variable_for_type_inference(dtype)
        helper.append_op(
            type="mpc_sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": False})
    # add bias
K
Kai He 已提交
156
    pre_activation = helper.append_mpc_bias_op(pre_bias, dim_start=num_flatten_dims)
J
jingqinghe 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    # add activation
    return helper.append_mpc_activation(pre_activation)


def softmax(input, use_cudnn=False, name=None, axis=-1):
    """
    This operator implements the softmax layer. The calculation process is as follows:
    1. The dimension :attr:`axis` of the ``input`` will be permuted to the last.
    
    2. Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
    3. After the softmax operation is completed, the inverse operations of steps 1 and 2 
    are performed to restore the two-dimensional matrix to the same dimension as the ``input``.
    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
    .. math::
        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}
    """
    attrs = {"axis": axis, "use_cudnn": use_cudnn}
    helper = MpcLayerHelper('softmax', **locals())
186
    check_mpc_variable_and_dtype(input, 'input', ['int64'], 'softmax')
J
jingqinghe 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

    dtype = helper.input_dtype()
    mpc_softmax_out = helper.create_mpc_variable_for_type_inference(dtype)
    helper.append_op(
        type="mpc_softmax",
        inputs={"X": input},
        outputs={"Out": mpc_softmax_out},
        attrs=attrs)
    return mpc_softmax_out


def relu(input, name=None):
    """
    Args:
        x(Variable): ${x_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Variable: ${out_comment}
    Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            import numpy as np
            in1 = np.array([[-1,0],[1,2.6]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu(x1)
                print(out1.numpy())
                # [[0.  0. ]
                #  [1.  2.6]]

    """
    inputs = {'X': [input]}
    helper = MpcLayerHelper('relu', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_mpc_variable_for_type_inference(dtype)
K
Kai He 已提交
224
    helper.append_op(
225 226 227
        type="mpc_relu", 
        inputs={"X": input}, 
        outputs={"Y": out})
J
jingqinghe 已提交
228
    return out
K
Kai He 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261


def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      name=None):
    """
    sigmoid_cross_entropy_with_logits
        forward: out = sigmoid(x). todo: add cross_entropy
        backward: dx = sigmoid(x) - label
    Args:
        x(MpcVariable): input
        label(MpcVariable): labels
        name(str|None): The default value is None.  Normally there is
            no need for user to set this property.  For more information,
            please refer to :ref:`api_guide_Name`
    Returns:
        out(MpcVariable): out = sigmoid(x)
    """

    helper = MpcLayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
        out = helper.create_mpc_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_mpc_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mpc_sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        outputs={"Out": out})
    return out