metrics.py 3.7 KB
Newer Older
H
He, Kai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MPC Metrics
"""

H
add auc  
He, Kai 已提交
18
import paddle.fluid.metrics
H
He, Kai 已提交
19 20 21 22 23 24 25 26
from paddle.fluid.metrics import MetricBase

import numpy as np
import scipy


__all__ = [
    'KSstatistic',
H
add auc  
He, Kai 已提交
27
    'Auc',
H
He, Kai 已提交
28 29 30 31 32 33 34 35 36
]


def _is_numpy_(var):
    return isinstance(var, (np.ndarray, np.generic))


class KSstatistic(MetricBase):
    """
H
He, Kai 已提交
37
    The KSstatistic is for binary classification.
H
He, Kai 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
    Refer to https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test#Kolmogorov%E2%80%93Smirnov_statistic
    Please notice that the KS statistic is implemented with scipy.

    The `KSstatistic` function creates 2 local variables, `data1`, `data2`
    which is predictions of positive samples and negative samples respectively
    that are used to compute the KS statistic.

    Args:
        name (str, optional): Metric name. For details, please refer to :ref:`api_guide_Name`. Default is None.

    Examples:
        .. code-block:: python

            import paddle_fl.mpc
            import numpy as np

            # suppose that batch_size is 128
            batch_num = 100
            batch_size = 128

            for batch_id in range(batch_num):

                class0_preds = np.random.random(size = (batch_size, 1))
                class1_preds = 1 - class0_preds

                preds = np.concatenate((class0_preds, class1_preds), axis=1)

                labels = np.random.randint(2, size = (batch_size, 1))
H
He, Kai 已提交
66 67 68 69

                # init the KSstatistic for each batch
                # to get global ks statistic, init ks before for-loop
                ks = paddle_fl.mpc.metrics.KSstatistic('ks')
H
He, Kai 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
                ks.update(preds = preds, labels = labels)

                # shall be some score closing to 0.1 as the preds are randomly assigned
                print("ks statistic for iteration %d is %.2f" % (batch_id, ks.eval()))

    """

    def __init__(self, name=None):
        super(KSstatistic, self).__init__(name=name)
        self._data1 = []
        self._data2 = []

    def update(self, preds, labels):
        """
        Update the auc curve with the given predictions and labels.

        Args:
             preds (numpy.array): an numpy array in the shape of
             (batch_size, 2), preds[i][j] denotes the probability of
             classifying the instance i into the class j.

             labels (numpy.array): an numpy array in the shape of
             (batch_size, 1), labels[i] is either o or 1, representing
             the label of the instance i.
        """
        if not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray.")
        if not _is_numpy_(preds):
            raise ValueError("The 'predictions' must be a numpy ndarray.")

        data1 = [preds[i, 1] for i, lbl in enumerate(labels) if lbl]
        data2 = [preds[i, 1] for i, lbl in enumerate(labels) if not lbl]

        self._data1 += data1
        self._data2 += data2

    def eval(self):
        """
        Return the area (a float score) under auc curve

        Return:
            float: the area under auc curve
        """

        return scipy.stats.ks_2samp(self._data1, self._data2).statistic
H
add auc  
He, Kai 已提交
115 116 117


Auc = paddle.fluid.metrics.Auc