op_test.py 33.9 KB
Newer Older
J
jhjiangcs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import unittest
import warnings
import numpy as np
import random
import six
import time
import itertools
import collections
from collections import defaultdict
from multiprocessing import Pipe, Process, Manager
import os
import traceback
import unittest
import redis

import paddle_fl.mpc as pfl_mpc
import paddle_fl.mpc.data_utils.aby3 as aby3

import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle_fl.mpc.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
from paddle.fluid.framework import Program, OpProtoHolder, Variable
from testsuite import create_op, set_input, append_input_output, append_loss_ops
from paddle.fluid import unique_name

import traceback

def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
    for i in six.moves.xrange(len(prob)):
        prob[i] /= prob_sum[i]
    return prob

def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.

       Check_grad is required for Op test cases. However, there are some special
       cases that do not need to do check_grad. This decorator is used to skip the
       check_grad of the above cases.

       Note: the execution of unit test will not be skipped. It just avoids check_grad
       checking in tearDownClass method by setting a `no_need_check_grad` flag.

       Example:
           @skip_check_grad_ci(reason="For inference, check_grad is not required.")
           class TestInference(OpTest):
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper

class Aby3Process(Process):
    """
    Extends from Process, evaluate the computation party in aby3.
    """
    def __init__(self, *args, **kwargs):
        Process.__init__(self, *args, **kwargs)
        self._pconn, self._cconn = Pipe()
        self._exception = None

    def run(self):
        """
        Override. Send any exceptions raised in
        subprocess to main process.
        """
        try:
            Process.run(self)
            self._cconn.send(None)
        except Exception as e:
            tb = traceback.format_exc()
            self._cconn.send((e, tb))

    @property
    def exception(self):
        """
        Get exception.
        """
        if self._pconn.poll():
            self._exception = self._pconn.recv()
        return self._exception

class OpTest(unittest.TestCase):
    def __init__(self, methodName='runTest'):
        super(OpTest, self).__init__(methodName)
        # set redis server and port
        self.server = os.environ['TEST_REDIS_IP']
        self.port = os.environ['TEST_REDIS_PORT']
        self.party_num = 3

    def setUp(self):
        """
        Connect redis and delete all keys in all databases on the current host.
        :return:
        """
        r = redis.Redis(host=self.server, port=int(self.port))
        r.flushall()

    def multi_party_run(self, **kwargs):
        """
        Run 3 parties with target function or other additional arguments.
        :param kwargs:
        :return:
        """
        r = redis.Redis(host=self.server, port=int(self.port))
        r.flushall()

        target = kwargs['target']

H
fix ut  
He, Kai 已提交
143
        parties = []
J
jhjiangcs 已提交
144 145 146

        for role in range(self.party_num):
            kwargs.update({'role': role})
H
fix ut  
He, Kai 已提交
147 148 149
            parties.append(Aby3Process(target=target, kwargs=kwargs))
            parties[-1].start()
        for party in parties:
J
jhjiangcs 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
            party.join()
            if party.exception:
                return party.exception
        return (True,)

    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
        cls.call_once = False
        cls.dtype = None
        cls.outputs = {}
        cls.input_shape_is_large = True

        np.random.seed(123)
        random.seed(124)

        cls._use_system_allocator = _set_use_system_allocator(True)

    @classmethod
    def tearDownClass(cls):
        """Restore random seeds"""
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

        _set_use_system_allocator(cls._use_system_allocator)

        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
                return False
            return True

        if not hasattr(cls, "op_type"):
            raise AssertionError(
                "This test do not have op_type in class attrs, "
                "please set self.__class__.op_type=the_real_op_type manually.")

        if not hasattr(cls, "no_need_check_grad") \
            and not is_empty_grad_op(cls.op_type):

            if not cls.input_shape_is_large and not hasattr(cls, "exist_check_grad"):
                raise AssertionError(
                    "Input's shape should be large than or equal to 100 for " +
                    cls.op_type + " Op.")

    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
            for _, var_value in six.iteritems(numpy_dict):
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
                                sub_val_value[1]):  # case 3
                            dtype_set.add(sub_val_value[1].dtype)
                        elif len(sub_val_value) > 1 and isinstance(sub_val_value[1], (list, tuple)) \
                            and is_np_data(sub_val_value[1][0]): # case 4
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
        dtype_set = set()
        infer_dtype(inputs, dtype_set)
        dtype_list = [
            np.dtype(np.float64), np.dtype(np.float32), np.dtype(np.float16),
            np.dtype(np.int64), np.dtype(np.int32), np.dtype(np.int16),
            np.dtype(np.int8), np.dtype(np.uint8), np.dtype(np.bool)
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
            if dtype in dtype_set:
                self.dtype = dtype
                break
        # save dtype in class attr
        self.__class__.dtype = self.dtype

    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
                    if isinstance(np_value, tuple):
                        tensor.set(np_value[0], place)
                        tensor.set_recursive_sequence_lengths(np_value[1])
                    else:
                        tensor.set(np_value, place)
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
                    tensor.set(self.inputs[var_name][0], place)
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
                else:
                    tensor.set(self.inputs[var_name], place)
                feed_map[var_name] = tensor

        return feed_map

    def _append_ops(self, block):
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now

        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
        "infer datatype from inputs and outputs for this test case"
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)

        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)

        return op

    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
        for name, value in six.iteritems(numpy_inputs):
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
                     for_inplace_test=False):
        program = Program()
        block = program.global_block()
        op = self._append_ops(block)

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

        if for_inplace_test:
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            for name in op.output_arg_names:
                var = block.var(name)
                var.persistable = True
        original_program = program
        #if parallel:
        #    use_cuda = False
        #    if isinstance(place, fluid.CUDAPlace):
        #        use_cuda = True
        #    compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
        #        loss_name=loss.name if loss else None, places=place)
        #    program = compiled_prog
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
            for var_name, var in six.iteritems(outputs):
                if no_check_set is not None and var_name in no_check_set:
                    continue
                if isinstance(var, list):
                    for v in var:
                        fetch_list.append(v.name)
                else:
                    fetch_list.append(var.name)
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

        return_results = [Manager().list() for _ in range(len(fetch_list))]

        def closure(**kwargs):
            role = kwargs['role']

            pfl_mpc.init("aby3", role, "localhost", self.server, int(self.port))

            #init_op = fluid.default_main_program().global_block().ops[0]

            #_insert_init_op(program, init_op)

            executor = Executor(place)

            executor.run()
            outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list)

            for idx in range(len(fetch_list)):
                return_results[idx].append(outs[idx])

        ret = self.multi_party_run(target=closure)
        self.assertEqual(ret[0], True)

        outs = []

        for idx in range(len(fetch_list)):
            outs.append(aby3.reconstruct(np.array(return_results[idx])))

        self.op = op
        self.program = original_program
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)

        Args:
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.

        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
                # get grad_op_desc
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs.
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True)
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True)
            else:
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_grad_output(place, fwd_res,
                                                          op_desc)

    def check_output_with_place(self,
                                place,
                                atol=0,
                                no_check_set=None,
                                equal_nan=False,
                                check_dygraph=True,
                                inplace_atol=None):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)

        outs, fetch_list = self._calc_output(place, no_check_set=no_check_set)
        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
            if out_name not in self.outputs:
                continue
            if no_check_set is not None and out_name in no_check_set:
                continue

            def find_imperative_actual(target_name, dygraph_outs, place):
                with fluid.dygraph.base.guard(place=place):
                    for name in dygraph_outs:
                        if name == target_name:
                            return dygraph_outs[name][0]
                        var_list = dygraph_outs[name]
                        for i, var in enumerate(var_list):
                            if var.name == target_name:
                                return dygraph_outs[name][i]
                    self.assertTrue(False, "Found failed {} {}".format(
                        dygraph_outs.keys(), target_name))

            def find_actual(target_name, fetch_list):
                found = [
                    i for i, var_name in enumerate(fetch_list)
                    if var_name == target_name
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

            if out_dup:
                sub_out = self.outputs[out_name]
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
                    idx = find_actual(sub_out_name, fetch_list)
                    actual = outs[idx]
                    actual_t = np.array(actual)
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
                    self.assertTrue(
                        np.allclose(
                            actual_t, expect_t, atol=atol, equal_nan=equal_nan),
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
                    if isinstance(expect, tuple):
                        self.assertListEqual(
                            actual.recursive_sequence_lengths(), expect[1],
                            "Output (" + sub_out_name +
                            ") has different lod at " + str(place))
            else:
                idx = find_actual(out_name, fetch_list)
                actual = outs[idx]
                actual_t = np.array(actual)
                expect = self.outputs[out_name]
                expect_t = expect[0] if isinstance(expect, tuple) else expect
                self.assertTrue(
                    np.allclose(
                        actual_t, expect_t, atol=atol, equal_nan=equal_nan),
                    "Output (" + out_name + ") has diff at " + str(place) +
                    "\nExpect " + str(expect_t) + "\n" + "But Got" +
                    str(actual_t) + " in class " + self.__class__.__name__)
                if isinstance(expect, tuple):
                    self.assertListEqual(actual.recursive_sequence_lengths(),
                                         expect[1], "Output (" + out_name +
                                         ") has different lod at " + str(place))

        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
        # computation order when multiple threads write the same address. So the
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
        if inplace_atol is not None:
            warnings.warn(
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
        # Check inplace for given op, its grad op, its grad_grad op, etc.
        # No effect on original OpTest
        self.check_inplace_output_with_place(
            place, no_check_set=no_check_set, inplace_atol=inplace_atol)

        return outs, fetch_list

    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):

        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
            # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
            # max_relative_error is 1e-7. According to the value of np.abs(a), we
            # change np.abs(a) to achieve dynamic threshold. For example, if
            # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
            # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
            # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
            abs_a = np.abs(a)
            abs_a[abs_a < 1e-3] = 1

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
                return ("%s error, %s variable %s max gradient diff %f over limit %f, "
                    "the first error element is %d, expected %f, but got %f.") \
                    % (self.op_type, msg_prefix, name, max_diff, max_relative_error,
                    offset, a.flatten()[offset], b.flatten()[offset])

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
                              user_defined_grads=None,
                              check_dygraph=True):
        self.scope = core.Scope()
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()

        self._check_grad_helper()

        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)

        if no_grad_set is None:
            no_grad_set = set()

        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
            tensor_size = six.moves.reduce(lambda a, b: a * b,
                                           tensor_to_check.shape(), 1)
            if tensor_size < 100:
                self.__class__.input_shape_is_large = False

        if not type(output_names) is list:
            output_names = [output_names]

        numeric_grads = user_defined_grads or [
            self.get_numeric_gradient(
                place,
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
                output_names,
                delta=numeric_grad_delta,
                in_place=in_place) for input_to_check in inputs_to_check
        ]
        analytic_grads = self._get_gradient(inputs_to_check, place,
                                            output_names, no_grad_set)
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))



    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
            tensor.set_recursive_sequence_lengths(lod)
        return tensor

    @staticmethod
    def np_dtype_to_fluid_dtype(input):
        return input

    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
                      parallel=False):
        prog = Program()
        block = prog.global_block()
        self._append_ops(block)
        loss = append_loss_ops(block, output_names)
        param_grad_list = append_backward(
            loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set)

        inputs = self._get_inputs(block)
        feed_dict = self.feed_var(inputs, place)

        fetch_list = [g for p, g in param_grad_list]

        return_results = [Manager().list() for _ in range(len(fetch_list))]

        def closure(**kwargs):
            role = kwargs['role']

            pfl_mpc.init("aby3", role, "localhost", self.server, int(self.port))

            #init_op = fluid.default_main_program().global_block().ops[0]

            #_insert_init_op(program, init_op)

            executor = Executor(place)

            executor.run()
            outs = executor.run(prog,
                            feed=feed_dict,
                            fetch_list=fetch_list)

            for idx in range(len(fetch_list)):
                return_results[idx].append(outs[idx])

        ret = self.multi_party_run(target=closure)
        self.assertEqual(ret[0], True)

        outs = []

        for idx in range(len(fetch_list)):
            outs.append(aby3.reconstruct(np.array(return_results[idx])))
        return outs

    def get_numeric_gradient(self,
                             place,
                             scope,
                             op,
                             inputs,
                             input_to_check,
                             output_names,
                             delta=0.005,
                             in_place=False):
        # FIXME: change this method by compile time concepts
        set_input(scope, op, inputs, place)

        def product(dim):
            return six.moves.reduce(lambda a, b: a * b, dim, 1)

        reveal = lambda x: (2**-16 * np.array(x))[0].astype('float32')

        tensor_to_check = scope.find_var(input_to_check).get_tensor()
        tensor_to_check = reveal(tensor_to_check)
        tensor_to_check_  = fluid.LoDTensor()
        tensor_to_check_.set(tensor_to_check, fluid.CPUPlace())
        tensor_to_check = tensor_to_check_
        tensor_size = product(tensor_to_check.shape())
        tensor_to_check_dtype = tensor_to_check._dtype()
        if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
            tensor_to_check_dtype = np.float32
        elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
            tensor_to_check_dtype = np.float64
        elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
            tensor_to_check_dtype = np.float16
            # set delta as np.float16, will automatic convert to float32, float64
            delta = np.array(delta).astype(np.float16)
        else:
            raise ValueError("Not supported data type " + str(
                tensor_to_check_dtype))

        def get_output():
            sum = []

            return_results = dict()

            for name in (output_names):
                return_results[name] = Manager().list()

            def closure(**kwargs):
                role = kwargs['role']

                pfl_mpc.init("aby3", role, "localhost", self.server, int(self.port))

                executor = Executor(place)

                executor.run()
                op.run(scope, place)

                for name in output_names:
                    out  = np.array(scope.find_var(name).get_tensor())
                    return_results[name].append(out[0])

            ret = self.multi_party_run(target=closure)
            self.assertEqual(ret[0], True)

            for output_name in output_names:
                plain = aby3.reconstruct(np.array(return_results[output_name]))
                sum.append(plain.mean())

            return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

        gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

        def __get_elem__(tensor, i):
            if tensor_to_check_dtype == np.float16:
                numpy_tensor = np.array(tensor).astype(np.float16)
                numpy_tensor = numpy_tensor.flatten()
                return numpy_tensor[i]
            elif tensor_to_check_dtype == np.float32:
                return tensor._get_float_element(i)
            else:
                return tensor._get_double_element(i)

        def __set_elem__(tensor, i, e):
            if tensor_to_check_dtype == np.float16:
                numpy_tensor = np.array(tensor).astype(np.float16)
                shape = numpy_tensor.shape
                numpy_tensor = numpy_tensor.flatten()
                numpy_tensor[i] = e
                numpy_tensor = numpy_tensor.reshape(shape)
                tensor.set(numpy_tensor, place)
            elif tensor_to_check_dtype == np.float32:
                tensor._set_float_element(i, e)
            else:
                tensor._set_double_element(i, e)

        # we only compute gradient of one element each time.
        # we use a for loop to compute the gradient of every element.
        for i in six.moves.xrange(tensor_size):
            if in_place:
                set_input(scope, op, inputs, place)

            # get one input element throw it's index i.
            origin = __get_elem__(tensor_to_check, i)
            # add delta to it, run op and then get the sum of the result tensor.
            x_pos = origin + delta
            __set_elem__(tensor_to_check, i, x_pos)
            y_pos = get_output()

            if in_place:
                set_input(scope, op, inputs, place)

            x_neg = origin - delta
            __set_elem__(tensor_to_check, i, x_neg)
            y_neg = get_output()

            __set_elem__(tensor_to_check, i, origin)
            gradient_flat[i] = (y_pos - y_neg) / delta / 2

        return gradient_flat.reshape(tensor_to_check.shape())