/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "Evaluator.h" #include "paddle/gserver/layers/DetectionUtil.h" using std::map; using std::vector; using std::pair; using std::make_pair; namespace paddle { /** * @brief detection map Evaluator * * The config file api is detection_map_evaluator. */ class DetectionMAPEvaluator : public Evaluator { public: DetectionMAPEvaluator() : evaluateDifficult_(false), cpuOutput_(nullptr), cpuLabel_(nullptr) {} virtual void start() { Evaluator::start(); allTruePos_.clear(); allFalsePos_.clear(); numPos_.clear(); } virtual real evalImp(std::vector& arguments) { overlapThreshold_ = config_.overlap_threshold(); backgroundId_ = config_.background_id(); evaluateDifficult_ = config_.evaluate_difficult(); apType_ = config_.ap_type(); MatrixPtr detectTmpValue = arguments[0].value; Matrix::resizeOrCreate(cpuOutput_, detectTmpValue->getHeight(), detectTmpValue->getWidth(), false, false); MatrixPtr labelTmpValue = arguments[1].value; Matrix::resizeOrCreate(cpuLabel_, labelTmpValue->getHeight(), labelTmpValue->getWidth(), false, false); cpuOutput_->copyFrom(*detectTmpValue); cpuLabel_->copyFrom(*labelTmpValue); Argument label = arguments[1]; const int* labelIndex = label.sequenceStartPositions->getData(false); size_t batchSize = label.getNumSequences(); vector>> allGTBBoxes; vector>>> allDetectBBoxes; for (size_t n = 0; n < batchSize; ++n) { map> bboxes; for (int i = labelIndex[n]; i < labelIndex[n + 1]; ++i) { vector bbox; getBBoxFromLabelData(cpuLabel_->getData() + i * 6, 1, bbox); int c = cpuLabel_->getData()[i * 6]; bboxes[c].push_back(bbox[0]); } allGTBBoxes.push_back(bboxes); } size_t n = 0; const real* cpuOutputData = cpuOutput_->getData(); for (size_t imgId = 0; imgId < batchSize; ++imgId) { map>> bboxes; size_t curImgId = static_cast((cpuOutputData + n * 7)[0]); while (curImgId == imgId && n < cpuOutput_->getHeight()) { vector label; vector score; vector bbox; getBBoxFromDetectData(cpuOutputData + n * 7, 1, label, score, bbox); bboxes[label[0]].push_back(make_pair(score[0], bbox[0])); ++n; curImgId = static_cast((cpuOutputData + n * 7)[0]); } allDetectBBoxes.push_back(bboxes); } for (size_t n = 0; n < batchSize; ++n) { for (map>::iterator it = allGTBBoxes[n].begin(); it != allGTBBoxes[n].end(); ++it) { size_t count = 0; if (evaluateDifficult_) { count = it->second.size(); } else { for (size_t i = 0; i < it->second.size(); ++i) if (!(it->second[i].isDifficult)) ++count; } if (numPos_.find(it->first) == numPos_.end() && count != 0) { numPos_[it->first] = count; } else { numPos_[it->first] += count; } } } // calcTFPos calcTFPos(batchSize, allGTBBoxes, allDetectBBoxes); return 0; } virtual void printStats(std::ostream& os) const { real mAP = calcMAP(); os << "Detection mAP=" << mAP; } virtual void distributeEval(ParameterClient2* client) { LOG(FATAL) << "Distribute detection evaluation not implemented."; } protected: void calcTFPos(const size_t batchSize, const vector>>& allGTBBoxes, const vector>>>& allDetectBBoxes) { for (size_t n = 0; n < allDetectBBoxes.size(); ++n) { if (allGTBBoxes[n].size() == 0) { for (map>>::const_iterator it = allDetectBBoxes[n].begin(); it != allDetectBBoxes[n].end(); ++it) { size_t label = it->first; for (size_t i = 0; i < it->second.size(); ++i) { allTruePos_[label].push_back(make_pair(it->second[i].first, 0)); allFalsePos_[label].push_back(make_pair(it->second[i].first, 1)); } } } else { for (map>>::const_iterator it = allDetectBBoxes[n].begin(); it != allDetectBBoxes[n].end(); ++it) { size_t label = it->first; vector> predBBoxes = it->second; if (allGTBBoxes[n].find(label) == allGTBBoxes[n].end()) { for (size_t i = 0; i < predBBoxes.size(); ++i) { allTruePos_[label].push_back(make_pair(predBBoxes[i].first, 0)); allFalsePos_[label].push_back(make_pair(predBBoxes[i].first, 1)); } } else { vector gtBBoxes = allGTBBoxes[n].find(label)->second; vector visited(gtBBoxes.size(), false); // Sort detections in descend order based on scores std::sort(predBBoxes.begin(), predBBoxes.end(), sortScorePairDescend); for (size_t i = 0; i < predBBoxes.size(); ++i) { real maxOverlap = -1.0; size_t maxIdx = 0; for (size_t j = 0; j < gtBBoxes.size(); ++j) { real overlap = jaccardOverlap(predBBoxes[i].second, gtBBoxes[j]); if (overlap > maxOverlap) { maxOverlap = overlap; maxIdx = j; } } if (maxOverlap > overlapThreshold_) { if (evaluateDifficult_ || (!evaluateDifficult_ && !gtBBoxes[maxIdx].isDifficult)) { if (!visited[maxIdx]) { allTruePos_[label].push_back( make_pair(predBBoxes[i].first, 1)); allFalsePos_[label].push_back( make_pair(predBBoxes[i].first, 0)); visited[maxIdx] = true; } else { allTruePos_[label].push_back( make_pair(predBBoxes[i].first, 0)); allFalsePos_[label].push_back( make_pair(predBBoxes[i].first, 1)); } } } else { allTruePos_[label].push_back(make_pair(predBBoxes[i].first, 0)); allFalsePos_[label].push_back( make_pair(predBBoxes[i].first, 1)); } } } } } } } real calcMAP() const { real mAP = 0.0; size_t count = 0; for (map::const_iterator it = numPos_.begin(); it != numPos_.end(); ++it) { size_t label = it->first; size_t labelNumPos = it->second; if (labelNumPos == 0 || allTruePos_.find(label) == allTruePos_.end()) continue; vector> labelTruePos = allTruePos_.find(label)->second; vector> labelFalsePos = allFalsePos_.find(label)->second; // Compute average precision. vector tpCumSum; getAccumulation(labelTruePos, &tpCumSum); vector fpCumSum; getAccumulation(labelFalsePos, &fpCumSum); std::vector precision, recall; size_t num = tpCumSum.size(); // Compute Precision. for (size_t i = 0; i < num; ++i) { CHECK_LE(tpCumSum[i], labelNumPos); precision.push_back(static_cast(tpCumSum[i]) / static_cast(tpCumSum[i] + fpCumSum[i])); recall.push_back(static_cast(tpCumSum[i]) / labelNumPos); } // VOC2007 style if (apType_ == "11point") { vector maxPrecisions(11, 0.0); int startIdx = num - 1; for (int j = 10; j >= 0; --j) for (int i = startIdx; i >= 0; --i) { if (recall[i] < j / 10.) { startIdx = i; if (j > 0) maxPrecisions[j - 1] = maxPrecisions[j]; break; } else { if (maxPrecisions[j] < precision[i]) maxPrecisions[j] = precision[i]; } } for (int j = 10; j >= 0; --j) mAP += maxPrecisions[j] / 11; ++count; } else if (apType_ == "Integral") { // Nature integral real averagePrecisions = 0.; real prevRecall = 0.; for (size_t i = 0; i < num; ++i) { if (fabs(recall[i] - prevRecall) > 1e-6) averagePrecisions += precision[i] * fabs(recall[i] - prevRecall); prevRecall = recall[i]; } mAP += averagePrecisions; ++count; } else { LOG(FATAL) << "Unkown ap version: " << apType_; } } if (count != 0) mAP /= count; return mAP * 100; } void getAccumulation(vector> inPairs, vector* accuVec) const { std::stable_sort( inPairs.begin(), inPairs.end(), sortScorePairDescend); accuVec->clear(); size_t sum = 0; for (size_t i = 0; i < inPairs.size(); ++i) { sum += inPairs[i].second; accuVec->push_back(sum); } } std::string getTypeImpl() const { return "detection_map"; } real getValueImpl() const { return calcMAP(); } private: real overlapThreshold_; // overlap threshold when determining whether matched bool evaluateDifficult_; // whether evaluate difficult ground truth size_t backgroundId_; // class index of background std::string apType_; // how to calculate mAP (Integral or 11point) MatrixPtr cpuOutput_; MatrixPtr cpuLabel_; map numPos_; // counts of true objects each classification map>> allTruePos_; // true positive prediction map>> allFalsePos_; // false positive prediction }; REGISTER_EVALUATOR(detection_map, DetectionMAPEvaluator); } // namespace paddle