# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=16) channels = get_config_arg("channels", int, 2) def two_conv(input, group_name): out1 = img_conv_layer(input=input, name=group_name+'_conv1_', filter_size=1, num_filters=channels, padding=0, shared_biases=True, act=ReluActivation()) out2 = img_conv_layer(input=input, name=group_name+'_conv2_', filter_size=3, num_filters=channels, padding=1, shared_biases=True, act=ReluActivation()) return out1, out2 def two_conv_bn(input, group_name): out1, out2 = two_conv(input, group_name) out1 = batch_norm_layer(input=out1, name=group_name+'_bn1_', use_global_stats=False, act=ReluActivation()) out2 = batch_norm_layer(input=out2, name=group_name+'_bn2_', use_global_stats=False, act=ReluActivation()) return out1, out2 def two_conv_pool(input, group_name): out1, out2 = two_conv(input, group_name) out1 = img_pool_layer(input=out1, name=group_name+'_pool1_', pool_size=3, stride=2, padding=0, pool_type=MaxPooling()) out2 = img_pool_layer(input=out2, name=group_name+'_pool2_', pool_size=5, stride=2, padding=1, pool_type=MaxPooling()) return out1, out2 def two_fc(input, group_name): out1 = fc_layer(input=input, name=group_name+'_fc1_', size=channels, bias_attr=False, act=LinearActivation()) out2 = fc_layer(input=input, name=group_name+'_fc2_', size=channels, bias_attr=False, act=LinearActivation()) return out1, out2 data = data_layer(name ="input", size=channels*16*16) tmp = img_conv_layer(input=data, num_channels=channels, filter_size=3, num_filters=channels, padding=1, shared_biases=True, act=ReluActivation()) a1, a2 = two_conv(tmp, 'conv_branch') tmp = addto_layer(input=[a1, a2], act=ReluActivation(), bias_attr=False) tmp = img_pool_layer(input=tmp, pool_size=3, stride=2, padding=1, pool_type=AvgPooling()) b1, b2 = two_conv_pool(tmp, 'pool_branch') tmp = concat_layer(input=[b1, b2]) tmp = img_pool_layer(input=tmp, num_channels=channels*2, pool_size=3, stride=2, padding=1, pool_type=MaxPooling()) tmp = img_conv_layer(input=tmp, filter_size=3, num_filters=channels, padding=1, stride=2, shared_biases=True, act=LinearActivation(), bias_attr=False) tmp = batch_norm_layer(input=tmp, use_global_stats=False, act=ReluActivation()) c1, c2 = two_conv_bn(tmp, 'bn_branch') tmp = addto_layer(input=[c1, c2], act=ReluActivation(), bias_attr=False) tmp = fc_layer(input=tmp, size=channels, bias_attr=True, act=ReluActivation()) d1, d2 = two_fc(tmp, 'fc_branch') tmp = addto_layer(input=[d1, d2]) out = fc_layer(input=tmp, size=10, bias_attr=True, act=SoftmaxActivation()) outputs(out)