# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import os import cv2 import numpy as np from PIL import Image, ImageDraw, ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True import math def visualize_box_mask(im, results, labels, threshold=0.5): """ Args: im (str/np.ndarray): path of image/np.ndarray read by cv2 results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] MaskRCNN's results include 'masks': np.ndarray: shape:[N, im_h, im_w] labels (list): labels:['class1', ..., 'classn'] threshold (float): Threshold of score. Returns: im (PIL.Image.Image): visualized image """ if isinstance(im, str): im = Image.open(im).convert('RGB') elif isinstance(im, np.ndarray): im = Image.fromarray(im) if 'masks' in results and 'boxes' in results and len(results['boxes']) > 0: im = draw_mask( im, results['boxes'], results['masks'], labels, threshold=threshold) if 'boxes' in results and len(results['boxes']) > 0: im = draw_box(im, results['boxes'], labels, threshold=threshold) if 'segm' in results: im = draw_segm( im, results['segm'], results['label'], results['score'], labels, threshold=threshold) return im def get_color_map_list(num_classes): """ Args: num_classes (int): number of class Returns: color_map (list): RGB color list """ color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] return color_map def draw_mask(im, np_boxes, np_masks, labels, threshold=0.5): """ Args: im (PIL.Image.Image): PIL image np_boxes (np.ndarray): shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] np_masks (np.ndarray): shape:[N, im_h, im_w] labels (list): labels:['class1', ..., 'classn'] threshold (float): threshold of mask Returns: im (PIL.Image.Image): visualized image """ color_list = get_color_map_list(len(labels)) w_ratio = 0.4 alpha = 0.7 im = np.array(im).astype('float32') clsid2color = {} expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1) np_boxes = np_boxes[expect_boxes, :] np_masks = np_masks[expect_boxes, :, :] im_h, im_w = im.shape[:2] np_masks = np_masks[:, :im_h, :im_w] for i in range(len(np_masks)): clsid, score = int(np_boxes[i][0]), np_boxes[i][1] mask = np_masks[i] if clsid not in clsid2color: clsid2color[clsid] = color_list[clsid] color_mask = clsid2color[clsid] for c in range(3): color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255 idx = np.nonzero(mask) color_mask = np.array(color_mask) im[idx[0], idx[1], :] *= 1.0 - alpha im[idx[0], idx[1], :] += alpha * color_mask return Image.fromarray(im.astype('uint8')) def draw_box(im, np_boxes, labels, threshold=0.5): """ Args: im (PIL.Image.Image): PIL image np_boxes (np.ndarray): shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] labels (list): labels:['class1', ..., 'classn'] threshold (float): threshold of box Returns: im (PIL.Image.Image): visualized image """ draw_thickness = min(im.size) // 320 draw = ImageDraw.Draw(im) clsid2color = {} color_list = get_color_map_list(len(labels)) expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1) np_boxes = np_boxes[expect_boxes, :] for dt in np_boxes: clsid, bbox, score = int(dt[0]), dt[2:], dt[1] if clsid not in clsid2color: clsid2color[clsid] = color_list[clsid] color = tuple(clsid2color[clsid]) if len(bbox) == 4: xmin, ymin, xmax, ymax = bbox print('class_id:{:d}, confidence:{:.4f}, left_top:[{:.2f},{:.2f}],' 'right_bottom:[{:.2f},{:.2f}]'.format( int(clsid), score, xmin, ymin, xmax, ymax)) # draw bbox draw.line( [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin), (xmin, ymin)], width=draw_thickness, fill=color) elif len(bbox) == 8: x1, y1, x2, y2, x3, y3, x4, y4 = bbox draw.line( [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)], width=2, fill=color) xmin = min(x1, x2, x3, x4) ymin = min(y1, y2, y3, y4) # draw label text = "{} {:.4f}".format(labels[clsid], score) tw, th = draw.textsize(text) draw.rectangle( [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color) draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255)) return im def draw_segm(im, np_segms, np_label, np_score, labels, threshold=0.5, alpha=0.7): """ Draw segmentation on image """ mask_color_id = 0 w_ratio = .4 color_list = get_color_map_list(len(labels)) im = np.array(im).astype('float32') clsid2color = {} np_segms = np_segms.astype(np.uint8) for i in range(np_segms.shape[0]): mask, score, clsid = np_segms[i], np_score[i], np_label[i] if score < threshold: continue if clsid not in clsid2color: clsid2color[clsid] = color_list[clsid] color_mask = clsid2color[clsid] for c in range(3): color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255 idx = np.nonzero(mask) color_mask = np.array(color_mask) idx0 = np.minimum(idx[0], im.shape[0] - 1) idx1 = np.minimum(idx[1], im.shape[1] - 1) im[idx0, idx1, :] *= 1.0 - alpha im[idx0, idx1, :] += alpha * color_mask sum_x = np.sum(mask, axis=0) x = np.where(sum_x > 0.5)[0] sum_y = np.sum(mask, axis=1) y = np.where(sum_y > 0.5)[0] x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1] cv2.rectangle(im, (x0, y0), (x1, y1), tuple(color_mask.astype('int32').tolist()), 1) bbox_text = '%s %.2f' % (labels[clsid], score) t_size = cv2.getTextSize(bbox_text, 0, 0.3, thickness=1)[0] cv2.rectangle(im, (x0, y0), (x0 + t_size[0], y0 - t_size[1] - 3), tuple(color_mask.astype('int32').tolist()), -1) cv2.putText( im, bbox_text, (x0, y0 - 2), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0), 1, lineType=cv2.LINE_AA) return Image.fromarray(im.astype('uint8')) def get_color(idx): idx = idx * 3 color = ((37 * idx) % 255, (17 * idx) % 255, (29 * idx) % 255) return color def visualize_pose(imgfile, results, visual_thresh=0.6, save_name='pose.jpg', save_dir='output', returnimg=False, ids=None): try: import matplotlib.pyplot as plt import matplotlib plt.switch_backend('agg') except Exception as e: logger.error('Matplotlib not found, please install matplotlib.' 'for example: `pip install matplotlib`.') raise e skeletons, scores = results['keypoint'] skeletons = np.array(skeletons) kpt_nums = 17 if len(skeletons) > 0: kpt_nums = skeletons.shape[1] if kpt_nums == 17: #plot coco keypoint EDGES = [(0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (6, 8), (7, 9), (8, 10), (5, 11), (6, 12), (11, 13), (12, 14), (13, 15), (14, 16), (11, 12)] else: #plot mpii keypoint EDGES = [(0, 1), (1, 2), (3, 4), (4, 5), (2, 6), (3, 6), (6, 7), (7, 8), (8, 9), (10, 11), (11, 12), (13, 14), (14, 15), (8, 12), (8, 13)] NUM_EDGES = len(EDGES) colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] cmap = matplotlib.cm.get_cmap('hsv') plt.figure() img = cv2.imread(imgfile) if type(imgfile) == str else imgfile color_set = results['colors'] if 'colors' in results else None if 'bbox' in results and ids is None: bboxs = results['bbox'] for j, rect in enumerate(bboxs): xmin, ymin, xmax, ymax = rect color = colors[0] if color_set is None else colors[color_set[j] % len(colors)] cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 1) canvas = img.copy() for i in range(kpt_nums): for j in range(len(skeletons)): if skeletons[j][i, 2] < visual_thresh: continue if ids is None: color = colors[i] if color_set is None else colors[color_set[j] % len(colors)] else: color = get_color(ids[j]) cv2.circle( canvas, tuple(skeletons[j][i, 0:2].astype('int32')), 2, color, thickness=-1) to_plot = cv2.addWeighted(img, 0.3, canvas, 0.7, 0) fig = matplotlib.pyplot.gcf() stickwidth = 2 for i in range(NUM_EDGES): for j in range(len(skeletons)): edge = EDGES[i] if skeletons[j][edge[0], 2] < visual_thresh or skeletons[j][edge[ 1], 2] < visual_thresh: continue cur_canvas = canvas.copy() X = [skeletons[j][edge[0], 1], skeletons[j][edge[1], 1]] Y = [skeletons[j][edge[0], 0], skeletons[j][edge[1], 0]] mX = np.mean(X) mY = np.mean(Y) length = ((X[0] - X[1])**2 + (Y[0] - Y[1])**2)**0.5 angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1) if ids is None: color = colors[i] if color_set is None else colors[color_set[j] % len(colors)] else: color = get_color(ids[j]) cv2.fillConvexPoly(cur_canvas, polygon, color) canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0) if returnimg: return canvas save_name = os.path.join( save_dir, os.path.splitext(os.path.basename(imgfile))[0] + '_vis.jpg') plt.imsave(save_name, canvas[:, :, ::-1]) print("keypoint visualize image saved to: " + save_name) plt.close() def visualize_attr(im, results, boxes=None, is_mtmct=False): if isinstance(im, str): im = Image.open(im) im = np.ascontiguousarray(np.copy(im)) im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) else: im = np.ascontiguousarray(np.copy(im)) im_h, im_w = im.shape[:2] text_scale = max(0.5, im.shape[0] / 3000.) text_thickness = 1 line_inter = im.shape[0] / 40. for i, res in enumerate(results): if boxes is None: text_w = 3 text_h = 1 elif is_mtmct: box = boxes[i] # multi camera, bbox shape is x,y, w,h text_w = int(box[0]) + 3 text_h = int(box[1]) else: box = boxes[i] # single camera, bbox shape is 0, 0, x,y, w,h text_w = int(box[2]) + 3 text_h = int(box[3]) for text in res: text_h += int(line_inter) text_loc = (text_w, text_h) cv2.putText( im, text, text_loc, cv2.FONT_ITALIC, text_scale, (0, 255, 255), thickness=text_thickness) return im def visualize_action(im, mot_boxes, action_visual_collector=None, action_text="", video_action_score=None, video_action_text=""): im = cv2.imread(im) if isinstance(im, str) else im im_h, im_w = im.shape[:2] text_scale = max(1, im.shape[1] / 1600.) text_thickness = 2 if action_visual_collector: id_action_dict = {} for collector, action_type in zip(action_visual_collector, action_text): id_detected = collector.get_visualize_ids() for pid in id_detected: id_action_dict[pid] = id_action_dict.get(pid, []) id_action_dict[pid].append(action_type) for mot_box in mot_boxes: # mot_box is a format with [mot_id, class, score, xmin, ymin, w, h] if mot_box[0] in id_action_dict: text_position = (int(mot_box[3] + mot_box[5] * 0.75), int(mot_box[4] - 10)) display_text = ', '.join(id_action_dict[mot_box[0]]) cv2.putText(im, display_text, text_position, cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 0, 255), 2) if video_action_score: cv2.putText( im, video_action_text + ': %.2f' % video_action_score, (int(im_w / 2), int(15 * text_scale) + 5), cv2.FONT_ITALIC, text_scale, (0, 0, 255), thickness=text_thickness) return im def visualize_vehicleplate(im, results, boxes=None): if isinstance(im, str): im = Image.open(im) im = np.ascontiguousarray(np.copy(im)) im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) else: im = np.ascontiguousarray(np.copy(im)) im_h, im_w = im.shape[:2] text_scale = max(1.0, im.shape[0] / 1600.) text_thickness = 1 line_inter = im.shape[0] / 40. for i, res in enumerate(results): if boxes is None: text_w = 3 text_h = 1 else: box = boxes[i] text = res if text == "": continue text_w = int(box[2]) text_h = int(box[5] + box[3]) text_loc = (text_w, text_h) cv2.putText( im, text, text_loc, cv2.FONT_ITALIC, text_scale, (0, 255, 255), thickness=text_thickness) return im