/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/lod_rank_table.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/operators/array_operator.h" #include "paddle/fluid/operators/math/math_function.h" namespace paddle { namespace operators { class ShrinkRNNMemoryOp : public ArrayOp { public: ShrinkRNNMemoryOp(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : ArrayOp(type, inputs, outputs, attrs) {} private: void RunImpl(const framework::Scope &scope, const platform::Place &place) const override { auto *x_var = scope.FindVar(Input("X")); PADDLE_ENFORCE(x_var != nullptr, "Input X must be set"); auto &x_tensor = x_var->Get(); size_t offset = this->GetOffset(scope, place); auto *rank_table_var = scope.FindVar(Input("RankTable")); PADDLE_ENFORCE(rank_table_var != nullptr, "RankTable must be set"); auto &rank_table = rank_table_var->Get(); auto &rank_items = rank_table.items(); int dst_num_rows = std::lower_bound(rank_items.begin(), rank_items.end(), offset, [](const framework::LoDRankTable::TableItem &a, size_t b) { return a.length > b; }) - rank_items.begin(); auto *out_var = scope.FindVar(Output("Out")); PADDLE_ENFORCE(out_var != nullptr, "Output(Out) must be set."); auto &out_tensor = *out_var->GetMutable(); size_t height = dst_num_rows; // do shrink for the top level LoD if (x_tensor.lod().size() > 0 && x_tensor.lod()[0].size() > static_cast(dst_num_rows)) { if (x_tensor.lod().size() > 1) { // MultiLevel LoD auto lod_offset = framework::GetSubLoDAndAbsoluteOffset( x_tensor.lod(), 0, dst_num_rows, 0); height = lod_offset.second.second; auto out_lod = out_tensor.mutable_lod(); framework::AppendLoD(out_lod, lod_offset.first); } else { // Shrink LoD auto lod_item = x_tensor.lod()[0]; lod_item.resize(dst_num_rows + 1); out_tensor.set_lod({lod_item}); const auto &const_lod_item = lod_item; height = const_lod_item.back(); } } if (height != 0) { out_tensor.mutable_data(place, x_tensor.type()); auto dev_ctx = platform::DeviceContextPool::Instance().Get(place); framework::TensorCopy(x_tensor.Slice(0, height), place, *dev_ctx, &out_tensor); } } }; class ShrinkRNNMemoryOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(LoDTensor) The RNN step memory to be shrinked."); AddInput("RankTable", "(LoDRankTable) The lod_rank_table of dynamic RNN."); AddInput("I", "(LoDTensor) The step index. The RNN step memory 'X' will be " "shrinked to match the size of the input of the index'th step."); AddOutput("Out", "(LoDTensor) The shrinked RNN step memory."); AddComment(R"DOC( This operator is used to shrink output batch of memory defined in dynamic RNN. Dynamic RNN is able to handle variable-length sequences, in which, sequences in a mini-batch are sorted by their lengths first. After that, the longest sequence becomes the first one in the sorted batch, followed by the second longest, the third longest, and so on. Dynamic RNN then slices a batch input timestep by timestep from the sorted input. Once any sequence in the input batch reaches its end, memory defined in dynamicRNN has to shrink its outputs to adapt to the input batch size for the next time step. )DOC"); } }; class ShrinkRNNMemoryInferShape : public framework::InferShapeBase { public: void operator()(framework::InferShapeContext *context) const override { PADDLE_ENFORCE(context->HasInput("X")); PADDLE_ENFORCE(context->HasInput("I")); PADDLE_ENFORCE(context->HasInput("RankTable")); context->SetOutputDim("Out", context->GetInputDim("X")); } }; class ShrinkRNNMemoryGradOp : public ArrayOp { public: ShrinkRNNMemoryGradOp(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : ArrayOp(type, inputs, outputs, attrs) {} private: void RunImpl(const framework::Scope &scope, const platform::Place &place) const override { auto *dout_var = scope.FindVar(Input(framework::GradVarName("Out"))); auto *dx_var = scope.FindVar(Output(framework::GradVarName("X"))); PADDLE_ENFORCE(dx_var != nullptr, "Input Gradient should not be nullptr"); auto *x_var = scope.FindVar(Input("X")); PADDLE_ENFORCE(x_var != nullptr); auto &x_tensor = x_var->Get(); auto &dx_tensor = *dx_var->GetMutable(); dx_tensor.Resize(x_tensor.dims()); dx_tensor.mutable_data(x_tensor.place(), x_tensor.type()); // get device context from pool platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); auto &dev_ctx = *pool.Get(place); if (dout_var == nullptr) { // dx_tensor fill zero math::set_constant(dev_ctx, &dx_tensor, 0.0f); } else { auto &dout_tensor = dout_var->Get(); auto height = dout_tensor.dims()[0]; if (height != 0) { auto slice = dx_tensor.Slice(0, static_cast(height)); framework::TensorCopy(dout_tensor, dout_tensor.place(), dev_ctx, &slice); } if (dx_tensor.dims()[0] > height) { auto rest_tensor = dx_tensor.Slice( static_cast(height), static_cast(dx_tensor.dims()[0])); math::set_constant(dev_ctx, &rest_tensor, 0.0f); } } dx_tensor.set_lod(x_tensor.lod()); } }; class ShrinkRNNMemoryGradInferShape : public framework::InferShapeBase { public: void operator()(framework::InferShapeContext *context) const override { PADDLE_ENFORCE(context->HasInput("X")); PADDLE_ENFORCE(context->HasOutput(framework::GradVarName("X"))); context->SetOutputDim(framework::GradVarName("X"), context->GetInputDim("X")); context->ShareLoD("X", framework::GradVarName("X")); } }; class ShrinkRNNGradOpMaker : public framework::SingleGradOpDescMaker { public: using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: std::unique_ptr Apply() const override { auto *op = new framework::OpDesc(); op->SetType("shrink_rnn_memory_grad"); op->SetInput("X", Input("X")); op->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); op->SetOutput(framework::GradVarName("X"), InputGrad("X")); op->SetAttrMap(Attrs()); return std::unique_ptr(op); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(shrink_rnn_memory, ops::ShrinkRNNMemoryOp, ops::ShrinkRNNMemoryInferShape, ops::ShrinkRNNMemoryOpProtoMaker, ops::ShrinkRNNGradOpMaker); REGISTER_OPERATOR(shrink_rnn_memory_grad, ops::ShrinkRNNMemoryGradOp, ops::ShrinkRNNMemoryGradInferShape);